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Overview of today

I Graphical models. Bayesian networks and Markov networks.

I Conditional independencies and graphical models.

I Gibbs sampling for graphical models.

I Learning networks.

I Causal networks.
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Graphical representations of conditional independencies

I In complex models with many variables, it is crucial to model and
keep track of how variables depend on each other.

I Idea: Represent dependencies in a graph.
I Helpful for visualization.
I May use graph theory in connection with computations.

I We will look at two examples of graphical models:
I Bayesian networks: Represent the (posterior) probability density as a

product of conditional densities:

π(x , y , z , v ,w) = π(x | y , z) · π(y | z) · π(z | v ,w) · π(v) · π(w)

I Markov random fields: Represent the (posterior) probability density
as a product of factors:

π(x , y , z , v ,w) = C · f1(x , y , z) · f2(y , z) · f3(z , v ,w) · f4(v) · f5(w)
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Bayesian networks

I Any joint distribution can be written as a product over conditional
distributions:

π(x1, . . . , xn) = π(x1)π(x2 | x1)π(x3 | x1, x2) . . . π(xn | x1, . . . , xn−1)

I Given a specific model, we might be able to drop the conditioning
on some of the variables in some factors. The representation then
conveys the structure of the model.

I Re-ordering the variables will often give a different representation!

I The graph with an arrow x → y for each of the conditionings
π(y | . . . x . . . ) in the representation above is the Bayesian Network
representation. x is “parent”, y is “child”.

I Note that, following the arrows, you can never get a cycle. Thus the
graph is a directed acyclic graph (DAG).

I Conversely, given any DAG and conditional distributions for each
child given its parents, the product of these gives a joint probability
distribution. (Show this).
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Bayesian networks for visualization

I Examples.

I Hierarchical models.

I Using repeated graph
components.
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Conditional independence

I If x and y become independent when we fix the value of z we say
that x and y are conditionally independent given z . We write
x
∐

y | z .

I Equivalent formulations:
I π(x , y | z) = π(x | z)π(y | z)
I π(x | y , z) = π(x | y)
I π(z | y , z) = π(z | y)

I We use the same definitions and notation when X , Y and Z are
disjoint groups of variables.

I Example: When the data x1, x2, x3 is iid given the parameter θ, we
get for example {x1, x2}

∐
x3 | θ.
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Reading off conditional independencies from a Bayesian
network

I Conditional independence statements can be “read off” the DAG of
a Bayesian network. Examples...

I Note: Conditioning on children may create dependencies.

I We say X and Y are d-separated given Z if there is no “active trail”
between any x ∈ X and y ∈ Y given Z . (An undirected path in the
DAG is a “trail”; it is “active” given Z if, for any “v-structure”
xi−1 → xi ← xi+1 in the trail, xi or a decendant is in Z , and no
other node in the trail is in Z ).

I Theorem: If X and Y are d-separated given Z in a Bayesian network
representation of a stochastic model, then X

∐
Y | Z .

I Theorem: If X and Y are not d-separated given Z in a DAG, then
there exists a stochastic model where X and Y are not conditionally
independent given Z that has the DAG as a Bayesian network.

I See Koller & Friedman: “Probabilistic Graphical Models” for details.
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Markov networks

I For many models, the probability (density) function may be written
as a product of positive factors where each has fewer variables.
Example:

π(x , y , z , v ,w) = C · f1(x , y , z) · f2(y , z) · f3(z , v ,w) · f4(v) · f5(w)

I Assume the representation is maximally reduced, i.e., for any pair of
variables x , y occuring in a factor, the factor cannot be written as a
product of two factors where the first does not contain x and the
second does not contain y .

I The corresponding Markov network contains an undirected edge
between x and y for all nodes x and y occurring together in a factor.

I Examples.

I Note: A Bayesian network may generally be converted into a Markov
network using moralization.
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Conditional independence in Markov networks

I For a variable x , its Markov blanket Z is the set of variables directly
connected to x in the Markov network representation.

I We then have x
∐

Y | Z for any set Y of variables not containing x
or Z .

I We define in the same way the Markov blanket of a set of variables
X ; the same holds conclusion about conditional independence holds.

I Examples

I A way to specify a stochastic model on a set of variables is to
construct a graph connecting the variables and specify the
conditional distribution of each variable given values of the variables
it is connected to. NOTE: This does not necessarily result in a
proper distribution!
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Simulation in Markov networks using Gibbs sampling

I With a Markov network representation of a posterior, we can set up
a Gibbs sampling from the posterior by iteratively simulating from
the conditional distribution of each node given its Markov blanket.

I Examples.

I Note: In order to simulate from the posterior, we need to know it is
proper. This is not always the case for Markov networks.

I We may simulate from a posterior represented as a Bayesian network
by converting it to a Markov network (using moralization) and then
simulate as above.

I Widely used programs like BUGS (WinBugs, OpenBugs), Jags (Just
Another Gibbs Sampler), and Stan offer ”black box”
implementations of Gibbs sampling on wide classes of Bayesian
Networks.
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Gaussian Markov random fields (GMRF)

I A density π(x1, . . . , xn) can be considered a GMRF if it can be
written as

π(x1, . . . , xn) = exp (−f (x1, . . . , xn))

where f (x1, . . . , xn) is a quadratic polynomial.

I We can then always re-write the density on x = (x1, . . . , xn) so that

π(x) = exp

(
−1

2
(x − µ)tQ(x − µ) + C

)
.

where µ is a vector, Q is a symmetric matrix, and C is a constant.

I The density is proper if and only if Q is positive definite. In this case
we can re-write the density as

π(x) =
1

|2πP−1|
exp

(
−1

2
(x − µ)tP(x − µ)

)
,

where P is a scalar multiple of Q, so that x ∼ Normal(µ,P−1).

I In many cases it may be useful to consider the Markov network for
the GMRF.
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GMRF and precision matrices

I For a GMRF and two variables xi and xj , the following are
equivalent:

1. There is no line between xi and xj in the Markov network.
2. In the term aijxixj in the quadratic polynomial f defining the density,

we have aij = 0.
3. In the precision matrix P, the ij-th entry pij is zero.

I Thus, if X , Y , and Z are groups of variables and we write

P =

PXX PXY PXZ

PYX PYY PYZ

PZX PZY PZZ


for the precision matrix of their joint distribution, we have
X
∐

Y | Z if and only if PXY = 0.

I Examples.
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A note about multivariate normal distributions

Assume the joint distribution for variables Z1, . . . ,Zk is multivariate normal.
Then

I If we integrate out Zi , the convariance matrix for the remaining variables
is equal to the submatrix corresponding to these variables of the
covariance matrix for the joint distribution. (We knew this).

I If we fix Zi , the precision matrix for the remaining variables is equal to the
submatrix corresponding to these variables of the precision matrix for the
joint distribution. See below:

Given the joint normal distribution

[θ1, θ2] ∼ Normal

(
[µ1, µ2],

[
P11 P12

P21 P22

]−1
)

, we get the conditional

distribution θ1 | θ2 ∼ Normal
(
µ1 − P−1

11 P12(θ2 − µ2),P−1
11

)
. Proof: Use the

identity ([
θ1
θ2

]
−
[
µ1

µ2

])t [
P11 P12

P21 P22

]([
θ1
θ2

]
−
[
µ1

µ2

])
=

(
θ1 − µ1 + P−1

11 P12(θ2 − µ2)
)t

P11

(
θ1 − µ1 + P−1

11 P12(θ2 − µ2)
)

+(θ2 − µ2)t(P22 − P21P
−1
11 P12)(θ2 − µ2).
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