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Overview of today

Graphical models. Bayesian networks and Markov networks.
Conditional independencies and graphical models.
Gibbs sampling for graphical models.

Learning networks.
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Causal networks.
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Graphical representations of conditional independencies

» In complex models with many variables, it is crucial to model and
keep track of how variables depend on each other.

> |dea: Represent dependencies in a graph.

» Helpful for visualization.
> May use graph theory in connection with computations.

> We will look at two examples of graphical models:

> Bayesian networks: Represent the (posterior) probability density as a
product of conditional densities:

w(x,y,z,v,w) =7(x|y,z) -7y |z) w(z ]| v,w)- 7w(v)- 7(w)

» Markov random fields: Represent the (posterior) probability density
as a product of factors:

7T(X,y,2, v, W) =C- ﬂ(X,y’Z) ' fz(y,z)- f3(z, v, W) : ﬁ‘(v) : f:r’(w)
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Bayesian networks

|

Any joint distribution can be written as a product over conditional
distributions:

(X1, oy Xn) = 7(x) (2 | x1)m(x3 | X1, %2) .- (Xn | X1+ vy Xne1)

Given a specific model, we might be able to drop the conditioning
on some of the variables in some factors. The representation then
conveys the structure of the model.

Re-ordering the variables will often give a different representation!

The graph with an arrow x — y for each of the conditionings
m(y |...x...) in the representation above is the Bayesian Network
representation. x is “parent”, y is “child”.

Note that, following the arrows, you can never get a cycle. Thus the
graph is a directed acyclic graph (DAG).
Conversely, given any DAG and conditional distributions for each

child given its parents, the product of these gives a joint probability
distribution. (Show this).
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Bayesian networks for visualization
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Conditional independence

» If x and y become independent when we fix the value of z we say
that x and y are conditionally independent given z. We write
x[ly |z

» Equivalent formulations:

> m(xy|2) =7(x| 2)(y | 2)
> w(x|y,z) =7(x|y)
> m(zly,z)=m7(z]y)

» We use the same definitions and notation when X, Y and Z are
disjoint groups of variables.

» Example: When the data xq, x», x3 is iid given the parameter 6, we
get for example {x1,x}[[x3 | 6.
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Reading off conditional independencies from a Bayesian

network

» Conditional independence statements can be “read off” the DAG of
a Bayesian network. Examples...

» Note: Conditioning on children may create dependencies.

» We say X and Y are d-separated given Z if there is no “active trail”
between any x € X and y € Y given Z. (An undirected path in the
DAG is a “trail”"; it is “active” given Z if, for any “v-structure”

Xj—1 — Xj < Xj4+1 in the trail, x; or a decendant is in Z, and no
other node in the trail is in Z).

» Theorem: If X and Y are d-separated given Z in a Bayesian network
representation of a stochastic model, then X [[Y | Z.

» Theorem: If X and Y are not d-separated given Z in a DAG, then
there exists a stochastic model where X and Y are not conditionally
independent given Z that has the DAG as a Bayesian network.

> See Koller & Friedman: “Probabilistic Graphical Models" for details.
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Markov networks

» For many models, the probability (density) function may be written
as a product of positive factors where each has fewer variables.
Example:

W(X,y,Z,V,W) =C- fl(Xayaz) ' f2()/?z) : f3(27 v, W) ! f4(V) ! fS(W)

> Assume the representation is maximally reduced, i.e., for any pair of
variables x, y occuring in a factor, the factor cannot be written as a
product of two factors where the first does not contain x and the
second does not contain y.

» The corresponding Markov network contains an undirected edge
between x and y for all nodes x and y occurring together in a factor.

> Examples.

» Note: A Bayesian network may generally be converted into a Markov
network using moralization.
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Conditional independence in Markov networks

> For a variable x, its Markov blanket Z is the set of variables directly
connected to x in the Markov network representation.

> We then have x[[ Y | Z for any set Y of variables not containing x
or Z.

> We define in the same way the Markov blanket of a set of variables
X; the same holds conclusion about conditional independence holds.

» Examples

» A way to specify a stochastic model on a set of variables is to
construct a graph connecting the variables and specify the
conditional distribution of each variable given values of the variables
it is connected to. NOTE: This does not necessarily result in a
proper distribution!
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Simulation in Markov networks using Gibbs sampling

» With a Markov network representation of a posterior, we can set up
a Gibbs sampling from the posterior by iteratively simulating from
the conditional distribution of each node given its Markov blanket.

» Examples.

» Note: In order to simulate from the posterior, we need to know it is
proper. This is not always the case for Markov networks.

» We may simulate from a posterior represented as a Bayesian network
by converting it to a Markov network (using moralization) and then
simulate as above.

» Widely used programs like BUGS (WinBugs, OpenBugs), Jags (Just
Another Gibbs Sampler), and Stan offer " black box”
implementations of Gibbs sampling on wide classes of Bayesian
Networks.

10/13



Gaussian Markov random fields (GMRF)

> A density 7(xi, ..., Xp) can be considered a GMREF if it can be

written as
(X1, ..oy Xn) = exp (—F(x1,...,Xn))
where f(xq,...,X,) is a quadratic polynomial.
» We can then always re-write the density on x = (x, ..., X,) so that

7(x) = exp (—;(X — 1) Q(x — p) + C) :

where p is a vector, Q is a symmetric matrix, and C is a constant.

» The density is proper if and only if Q is positive definite. In this case
we can re-write the density as

106) = sy o0 (50— 1P ).

where P is a scalar multiple of @, so that x ~ Normal(u, P~1).

> In many cases it may be useful to consider the Markov network for
the GMRF.
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GMREF and precision matrices

» For a GMRF and two variables x; and Xx;, the following are
equivalent:

1. There is no line between x; and x; in the Markov network.

2. In the term ajix;x; in the quadratic polynomial f defining the density,
we have a;j = 0.

3. In the precision matrix P, the ij-th entry pj is zero.

» Thus, if X, Y, and Z are groups of variables and we write
Pxx Pxy Pxz

P= [Pyx Pyy Pyz
Pzx Pzy Pzz

for the precision matrix of their joint distribution, we have
X1IY | Z if and only if Pxy = 0.

» Examples.
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A note about multivariate normal distributions

Assume the joint distribution for variables Zi,. .., Zx is multivariate normal.
Then
> If we integrate out Z;, the convariance matrix for the remaining variables
is equal to the submatrix corresponding to these variables of the
covariance matrix for the joint distribution. (We knew this).

> If we fix Z;, the precision matrix for the remaining variables is equal to the
submatrix corresponding to these variables of the precision matrix for the
joint distribution. See below:
Given the joint normal distribution
Pi P ]t
[01,02] ~ Normal ( [u1, p2], 11 12 , we get the conditional
Py P2

distribution 6; | 02 ~ Normal (11 — Pi;* P12(62 — p2), Pj;'). Proof: Use the

identity
O] | m ‘I Pu P | | m
0> 2 P> Pax 0> 2
—1 t —1
= (91 — p1 + Piy Pia(62 — #2)) P11 (6'1 — p1+ Py Pia(62 — uz))
+(02 — 112) (P22 — Pa1 Py P1a) (02 — o).
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