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Overview

Today: Focus is on finding the maximum aposteriori (MAP) in graphical
models.

I A basic example: The Viterbi algorithm, for HMMs.

I A more advanced example: The Baum-Welch algorithm, for
estimating parameters in HMMs. An example of the EM-algorithm!

I The ideas of the two examples above can be generalized into
handling graphical models where the graph does not contain loops.
(Note that small loops can be handled conceptually by joining
together several variables into one).

I When the graph contains large loops, the problem may be very hard
(NP) and approximate solutions may be necessary.
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The Viterbi algorithm

We start with an HMM where the xi have a finite state space {1, . . . , k}:

Objective: Compute the vector x0, . . . , xT which gives the highest
posterior, for given fixed values of the yi . IDEA: Compute and store,
recursively, for i = 0, . . . ,T , the following:

I For j = 1, . . . , k :
I The vector (x̂1, . . . , x̂i ) maximizing π(x̂1, . . . , x̂i , y1, . . . , yi ) with

x̂i = j . NOTE: Only the value of x̂i−1 needs to be stored!
I The value of this maximum.

I Because of indepenencies, the first i − 1 values of (x̂1, . . . , x̂i ) will
always correspond to those considered at the i − 1’th step.

I At any point, (x̂1, . . . , x̂i ) can be reconstructed tracing backwards
through stored information.

I The recursion step consists in considering all possible combinations
of xi−1 and xi .
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The Baum-Welch algorithm

We start with an HMM where all the nodes have a finite state spaces

but where some of the parameters of the distributions π(X0),
π(Xi | Xi−1), and π(Yi | Xi ) are unknown. Objective: Given fixed values
for the yi , find maximum likelihood estimates for the parameters in the
model.

I Note: By adding nodes representing the unknown parameters, and
assuming flat priors, the problem becomes that of computing a MAP.

I Idea: Use the EM algorithm, with the values of the xi as the
augmented data.

I The E step of the EM algorithm is computed using the
Forward-Backward algorithm.
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The Baum-Welch algorithm: Example

For simplicity we assume each Xi can have values 1, . . . ,M. Let

θ = (q, p) = ((q1, . . . , qM), (p11, . . . , pMM))

be the parameters we want to estimate, where

qj = Pr(X0 = j)

pjk = Pr(Xi = k | Xi−1 = j)

The full loglikelihood given θ becomes

log (π(x0, . . . , xT , y0, . . . , yT | θ))

= log

(
π(x0 | θ)

T∏
i=1

π(xi | xi−1, θ)
T∏
i=0

π(yi | xi )

)

= log π(x0 | θ) +
T∑
i=1

log π(xi | xi−1, θ) +
T∑
i=0

log π(yi | xi )

= C +
M∑
j=1

I (x0 = j) log qj +
T∑
i=1

M∑
j=1

M∑
k=1

I (xi−1 = j)I (xi = k) log pjk
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The Baum-Welch algorithm continued

I In the E step, we would like to compute the expectation of the full
loglikelihood under the distribution π(x0, . . . , xT | y0, . . . , yT , θold)
for some set of parameters θold .

I Thus we need to compute the expectations E [I (x0 = j)] and
E [I (xi−1 = j)I (xi = k)] under this distribution.

I Fixing θold , we can use the Forward-Backward algorithm to compute
the densities π(xi | y0, . . . , yi ) and π(yi+1, . . . , yT | xi ). Further we
have that

π(xi , xi+1 | y0, . . . , yT )

∝ π(yi+1, . . . , yT | xi , xi+1)π(xi , xi+1 | y0, . . . , yi )
∝ π(yi+2, . . . , yT | xi+1)π(yi+1 | xi+1)π(xi+1 | xi )π(xi | y0, . . . , yi )

making it possible to compute the joint posterior for xi and xi+1

from these densities.
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The Baum-Welch algorithm continued

The algorithm can now be summed up as

I Choose starting parameters θold .

I Run the Forward-Backward algorithm on the Markov model with
parameters θold to compute the numbers E [I (x0 = j)] and
E [I (xi−1 = j)I (xi = k)].

I Find the θ maximizing the expected loglikelihood

M∑
j=1

E [I (x0 = j)] log qj +
T∑
i=1

M∑
j=1

M∑
k=1

E [I (xi−1 = j)I (xi = k)] log pjk

In fact, we get

q̂j = E [I (x0 = j)] and p̂jk =

∑T
i=1 E [I (xi−1 = j)I (xi = k)]∑M

k=1

∑T
i=1 E [I (xi−1 = j)I (xi = k)]

I Set θold = ((q̂1, . . . , q̂M), (p̂11, . . . , p̂MM)) and iterate until
convergence.
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