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Outline

I Model choice using context knowledge (recommended).

I Some other model choice ideas (less recommended).

I Model choice without using context knowledge: Aiming for
simplicity.
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Building Bayesian models – a recommended way to work

I Any data analysis should start with some data exploration!

I If possible, take as starting point your understanding of the process
that has generated the data.

I Set up a model (a Bayesian Network?) with arrows pointing in the
direction of causality.

I It should contain: Variables y you have observed (data), variables
yNEW you want to predict, and additional variables which may be
divided into parameters θ and augmented data (or “extra variables”)
z , where we often will have yNEW

∐
z | θ.

I My advice: Better to build a good model with extra variables z than
an ad-hoc model directly connecting y and yNEW via θ.

I Generally, use “uninformative priors”.

I When there is concrete documentable additional information about,
say, θ, one may use it to create an informative prior.
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Uninformative priors

I We want an “uninformative prior” on a parameter θ to represent “no
knowledge”. Unfortutately, it is not mathematically clear how this
should be best defined.

I We have often used “flat” priors; however, a flat prior may not stay
flat if θ is re-parametrized.

I If µ is a “location” parameter, you might use π(µ) ∝ 1; if λ is a
“scale” parameter, a good alternative may be π(λ) ∝ 1/λ.

I A number of theories have been developed. Some aim for maximized
entropy. However, we will not go into these theories.
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Model choice

When building a Bayesian model, how does one choose between different
options? Some tools:

I Use the prior predictive and compare with contextual knowledge.

I Use the posterior predictive and compare with contextual knowledge.

I Aim for “simplicity”, informally or formally using “information
criteria”.

I As far as possible, investigate robustness with respect to changes in
the model (in particular changes in prior distributions).
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Comparing the prior predictive with context knowledge

I The prior model should represent ”prior knowedge”: A way to check
that it does this correctly is to simulate new data from the prior
predictive and check if they look like what you expect a priori.

I Examples
I Simulate from the prior of a stochastic model for tree growth.
I Simulate from the prior of a stochastic model for geological faults.
I Simulate from the prior of a stochastic model for image noise.

I Example: If one believes some unobserved quantities should follow
some distribution, one may compute or simulate their quantiles in
this distribution: They should then be uniformly distributed.
(Example: Prior predictive p-values).

I This is closely connected to cross validation: From data x1, . . . , xn,
use all but xi to fit the model and use the fitted model to predict xi .
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Comparing the posterior predictive with contet knowledge

I The prior will indicate that some ”features” of the model can be
”informed” by the data, while other ”features” are fixed. Are there
”features” that are fixed that need to be informed by the data? This
can be investigated by comparing simulations from the posterior
predictive with the actual data. Are there systematic differences?

I Very simple example:
I Data, 4.33, 4.32, 4.35, 4.30.
I Model: yi ∼ Normal(µ, σ2).
I If the prior is µ ∼ Normal(0, 100), σ2 = 1, simulations from the

posterior predictive will have too much spread in the data.
I If the prior is µ = 0, π(σ2) ∝ 1/σ2, simulations from the posterior

predictive will hav both wrong mean and wrong spread.

I Posterior predictive p-values

I Heart transplant example in chapter 7 of Albert.
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”Model choice” using weighed models and Bayes Factors

I Consider the theory for mixtures previously presented: Instead of
mixtures of conjugate distributions, one can use mixtures of any set
of priors gi (θ). The prior predictives fi (x) and the posteriors g ′

i (θ)
exist, even if they may be difficult to compute.

I We get that the posterior is a mixture of the corresponding
posteriors, with weights updated using the prior predictive values
fi (x) for the data.

I If we have only k = 2 priors, with weights α1 and α2 = 1− α1, and
if we denote the posterior weights α′

1 and α′
2 = 1− α′

1, we get

α′
1

1− α′
1

=
f1(x)

f2(x)
· α1

1− α1

i.e., the posterior odds α′
1/(1− α′

1) is equal to the likelihood ratio
f1(x)/f2(x) times the prior odds α1/(1− α1).

I f1(x)/f2(x) is called the Bayes factor.

8 / 14



Difficulties using Bayes Factors for model choice

I Instead of determining prior weights for the models, one may
compare the model likelihoods: If one is ”sufficiently big”, one may
decide to go with only this model. (A practical alternative to using
Hypothesis Testing for model selection).

I Alternatively, one may go on with a weighted mean of the models,
but then actual prior weights must be determined. May be
particularly difficult to do when the models are structurally different.

I Improper priors may cause difficulties in the setup above.

I Improper priors should not be replaced with ”vague” priors for model
comparison purposes!

I Main problem: You have to first come up with the list of ”possible”
models, before you can do model selection using Bayes factors!
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Informal model checking: Hypothesis testing

I A practical problem with model comparison via Bayes factors is that
both (or all) models need to be completely specified.

I Hypothesis testing lets you compare a model with an alternative
that deviates from it in the direction measured by the test statistic,
but may otherwise be unspecified.

I Thus, hypothesis testing can be used in Bayesian statistics as a way
to indicate alternative models.

I Over-interpretation of p-values must be avoided.
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Robustness

I Another approach to the choice of models and priors: Check if
switching between different choices matters for the final result.

I NOTE: For any posterior, there exists a prior that will give this
posterior (assuming nonzero densities).

I Revised question: Do reasonable changes in the prior affect the
result much?

I If not, the prior is called robust for this likelihood.
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The problem of “overfitting” often considered in
connection to model choice

I A large portion of frequentist statistics deals with the problem of
“overfitting”: The fitted model fits the old data so well that it does
not predict new data well.

I In Bayesian statistics, replacing maximum likelihood parameter
estimation with the use of posterior distributions for parameters will
often alleviate such problems.

I However, a Bayesian version of “overfitting” can occur if
“overusing” the data to construct the model (i.e., either the
likelihood or the prior).
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Comparing models based on their complexity

I For various reasons, one might want to build a stochastic model for
some data without using (much) context knowledge.

I Example: Neural network models.

I The idea then is to weigh the complexity of the model against the
likelihood of the data under the model.

I Use of information criteria that penalize the complexity of a model:

I I AIC, Akaike Information Criterion.
I BIC Bayesian Information Criterion.
I DIC Deviance Information Criterion.
I ...
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Model selection: Learning graphical network models from
data

I Given a set of observations of a set of variables, one may assume this
is a (random) sample from a joint distribution, and one may try to
learn a reasonable set of conditional independencies from the data.

I More concretely, an algorithm produces one (or several) graphical
models from the data.

I In principle, the same issues as for Bayesian model selection, or any
other model selection, apply.

I Problem: There are a huge number of possible graphs for a
moderately long list of variables.

I Important field of research.
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