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Approximate computing using Variational Bayes

I Assume we can write down the posterior
πpost(θ | y) ∝θ π(y | θ)π(θ) up to a constant factor, but we are not
able to compute or simulate from it.

I An alternative is to find and use an approximate function
q(θ) ≈ πpost(θ | y).

I Specifically, we try to find the function q ∈ Q (where Q is some set
of density functions defined on θ) minimizing the Kullback Leibler
distance KL[q||πpost ].

I Note, if πpost ∈ Q, the KL distance is minimized (with value 0)
when q = πpost .

I Most commonly, Q consists of all functions factorizing over a
specific partition of the variables in θ: Writing θ = (θ1, . . . , θk), we
have, for q ∈ Q,

q((θ1, θ2, . . . , θk)) = q1(θ1)q2(θ2) · · · qk(θk)
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Variational Bayes

We can write

log π(y) = log π(y , θ)− log πpost(θ | y)

which, for any q ∈ Q, gives rise to

log π(y) = L(q) + KL[q||πpost ]

where

L(q) =

∫
q(θ) log

(
π(y , θ)

q(θ)

)
dθ

KL[q||πpost ] = −
∫

q(θ) log

(
πpost(θ | y)

q(θ)

)
dθ

Writing q(θ) =
∏k

i=1 qi (θi ), we get

L(q) =

∫ k∏
i=1

qi (θi ) log π(y , θ) dθ −
k∑

i=1

∫
qi (θi ) log(qi (θi )) dθi
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Variational Bayes

Selecting some j ∈ {1, . . . , k}, we get that the qj maximizing L(q)
subject to qi being fixed for all i 6= j is the qj maximizing∫

qj(θj) E−j [log π(y , θ)] dθj −
∫

qj(θj) log(qj(θj)) dθj ,

i.e., the qj minimizing the KL distance KL [qj ||w ], where w(θj) is the
density on θj whose log-density is, up to a constant, equal to
E−j [log π(y , θ)], where E−j indicates the expectation under the density
where all qi , i 6= j , are fixed.

I The algorithm starts with some q ∈ Q.

I For all j ∈ {1, . . . , k}, find qj as the density proportional to
exp (E−j [log π(y , θ)]).

I Find the densities qj fulfilling these joint equations, either directly or
using iteration.

I For more details, see Chapter 10 in Bishop.
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Variational Bayes: Example

I Consider the following example:

y1, . . . , yn ∼ Normal(µ, τ−1)

π(µ) ∝ 1

π(τ) ∝ 1/τ

I We know that the exact posterior is given by

τ | y1, . . . , yn ∼ Gamma

(
n − 1

2
,
n − 1

2
s2
)

µ | τ, y1, . . . , yn ∼ Normal
(
y , (nτ)−1

)
where s2 is the sample variance.

I As an illustration, we find the Variational Bayes approximate posterior.
Note:

π(y1, . . . , yn, µ, τ) ∝ 1

τ

n∏
i=1

1√
2π/τ

exp
(
−τ

2
(yi − µ)2

)
log(π(y1, . . . , yn, µ, τ)) = C +

(n
2
− 1
)

log τ − τ

2
(n − 1)s2 − nτ

2
(y − µ)2

5 / 10



Variational Bayes: Example

I Assume q(µ, τ) = qµ(µ)qτ (τ); let Eµ and Eτ be the expectations
under qµ and qτ , respectively. Taking Eτ , the logposterior becomes,
as a function of µ,

C ′ − n

2
Eτ (τ)(y − µ)2

corresponding to a Normal
(
y , (n Eτ (τ))−1

)
distribution for µ.

I Taking Eµ, the logposterior becomes, as a function of τ ,

C +
(n

2
− 1
)

log τ − τ

2
(n − 1)s2 − nτ

2
Eµ

[
(y − µ)2

]
corresponding to Gamma

(
n
2 ,

1
2

(
(n − 1)s2 + n Eµ

(
(y − µ)2

)))
for τ .

I Solving for the expectations, we get the Variational Bayes solution

τ | y1, . . . , yn ∼ Gamma

(
n

2
,
ns2

2

)
µ | y1, . . . , yn ∼ Normal

(
y ,

s2

n

)
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Approximate Bayesian Computations (ABC)

I In our Bayesian inference methods so far, simulation from the
posterior π(θ | x) is based on being able to compute, for various θ,
π(x | θ)π(θ), (at least up to a constant).

I What if we do not have a formula for the likelihoood π(x | θ)?

I Example: Our stochastic ”model” could be some very complex
stochastic computer simulation program R(θ) producing a value for
x given a value for θ.

I Idea for simulating from the posterior: Simulate θ from the prior,
and keep only those θ with R(θ) = x .
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ABC cont.

I Example:
I θ is binary with P(θ = 1) = 0.6
I x is binary with Pr(x = 1 | θ = 1) = 0.9, Pr(x = 1 | θ = 0) = 0.1
I If the data is x = 1 then simulated values θ = 1 would be kept with

probability 0.9, simulated values θ = 0 would be kept with
probability 0.1.

I We see the result corresponds to simulating θ = 1 with probability
0.54/0.58 = 0.93; correct according to Bayes formula.

I For continuous variables x we would get zero acceptance probability
unless we replace the acceptance criterion R(θ) = x with R(θ) ≈ x .

I The most basic ABC algorithm defines a distance function ρ on the
set where x lives, and an acceptance threshold ε. Then θ1, . . . , θn
are simulated from the prior, and those θi with ρ(R(θi ), x) ≤ ε are
accepted.
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ABC: Using sufficient statistic or similar

I In any (Bayesian) analysis, the likelihood π(x | θ) can be replaced by
the corresponding likelihood π(S(x) | θ) of a sufficient statistic S(x).

I Simple example: The likelihood of data x = (x1, . . . , xn), where
xi ∼ Normal(θ, 1) can be replaced with the likelihood of
S(x) = x ∼ Normal(θ, 1/n).

I If we can only simulate x = R(θ) we are unlikely to be able to prove
that a statistic is sufficient. However, we may specify a function S
we believe ”summarizes” the features of the data that depend on θ.
Then we replace x with S(x).
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ABC: Modelling the likelihood

I In realistic examples the acceptance rate or the accuracy will still be
too low.

I A solution: Try to simulate the ”correct” θ:
I Example: If R(θ1) and R(θ2) are ”on either side of x”, maybe

(θ1 + θ2)/2 will result in a value closer to x .

I Note: Targeting the simulation of θ in this way means the
acceptance must be adjusted accordingly.
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