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Approximate computing using Variational Bayes

» Assume we can write down the posterior
Tpost(0 | ¥) oo m(y | )m(0) up to a constant factor, but we are not
able to compute or simulate from it.

» An alternative is to find and use an approximate function
q(a) ~ 7"'post(e | y)'

» Specifically, we try to find the function g € Q (where Q is some set
of density functions defined on 6) minimizing the Kullback Leibler
distance KL[q||mpost]-

> Note, if Tpost € Q, the KL distance is minimized (with value 0)
when g = Tpost.

» Most commonly, Q consists of all functions factorizing over a
specific partition of the variables in §: Writing 0 = (01, ...,0k), we
have, for g € Q,

q((01,02,...,0k)) = q1(01)q2(02) - - - qi(6k)
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Variational Bayes

We can write

log m(y) = log 7(y,0) — log mpost (6 | y)

which, for any g € Q, gives rise to

log w(y) = L£(q) + KL[q|[7post]

cta) = [ a8 (”é{éf)) 6

Ktlallrpe] = - [ atoyiog (2= 12)) oo

where

Writing q(6) = Hf;l qi(0;), we get

£la) = [ T a6 togn(r.0)do = " [ (60 toglai(0) ot
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Variational Bayes

Selecting some j € {1,..., k}, we get that the q; maximizing L(q)
subject to g; being fixed for all i # j is the q; maximizing

/qj(aj)E—j [log 7(y, 0)] d9j—/qj(9j) log(q;(6;)) d¥;,

i.e., the gj minimizing the KL distance KL [gj||w], where w(6}) is the
density on 6; whose log-density is, up to a constant, equal to
E_j[log 7(y, 0)], where E_; indicates the expectation under the density
where all g;, i # J, are fixed.
» The algorithm starts with some g € Q.
» Forall j € {1,...,k}, find g; as the density proportional to
exp (E_j [log m(y, 0)]).
» Find the densities g; fulfilling these joint equations, either directly or
using iteration.

» For more details, see Chapter 10 in Bishop.
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Variational Bayes: Example

» Consider the following example:

Vi, ooy Vo o~ Normal(,u,Tfl)

m(p) o 1
w(r) o« 1/t

» We know that the exact posterior is given by

-1 -1
TVt~ Gamma(L n 52)

2 72
wl T y,....¥a ~ Normal ()7, (m—)fl)

where s? is the sample variance.

» As an illustration, we find the Variational Bayes approximate posterior.
Note:

(Y1 e oy Yoy 115 T) X H\/ﬁ (T(y*M)Z)
log(m(y1, .-, ym 11, 7)) = c+(5—1)|ogr—§(n—1)s2—%(y—u)2
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Variational Bayes: Example

> Assume q(i,7) = qu(1)q-(7); let E, and E. be the expectations
under g, and g, respectively. Taking E., the logposterior becomes,
as a function of pu,

C' = JE(1)(F — n)?

corresponding to a Normal ()7, (n ET(T))_1> distribution for (.

» Taking E,,, the logposterior becomes, as a function of 7,

C+ (g ~1) logr - S(n—1)s? = ZLE, [(7— n)’]

corresponding to Gamma (4,1 ((n—1)s® 4+ nE,, ((y — p)?))) for 7.

» Solving for the expectations, we get the Variational Bayes solution

n ns?
Ty, .oy ¥n ~ Gamma e

52
:U‘|}/17"'7)/n ~ Normal <ya n)
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Approximate Bayesian Computations (ABC)

» In our Bayesian inference methods so far, simulation from the
posterior (6 | x) is based on being able to compute, for various 8,
m(x | 8)7(6), (at least up to a constant).

» What if we do not have a formula for the likelihoood 7(x | )7

» Example: Our stochastic "model” could be some very complex
stochastic computer simulation program R(6) producing a value for
x given a value for 6.

» Idea for simulating from the posterior: Simulate 6 from the prior,
and keep only those 6 with R(#) = x.
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» Example:
> 0 is binary with P(6 =1) = 0.6
> x is binary with Pr(x=1]6=1)=0.9, Pr(x=1]6=0)=0.1
> If the data is x = 1 then simulated values § = 1 would be kept with
probability 0.9, simulated values § = 0 would be kept with
probability 0.1.
> We see the result corresponds to simulating # = 1 with probability
0.54/0.58 = 0.93; correct according to Bayes formula.
» For continuous variables x we would get zero acceptance probability
unless we replace the acceptance criterion R(6) = x with R(6) ~ x.

> The most basic ABC algorithm defines a distance function p on the
set where x lives, and an acceptance threshold €. Then 64,...,0,
are simulated from the prior, and those 6; with p(R(6;), x) < € are
accepted.
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ABC: Using sufficient statistic or similar

> In any (Bayesian) analysis, the likelihood 7(x | ) can be replaced by
the corresponding likelihood 7(S5(x) | #) of a sufficient statistic S(x).

» Simple example: The likelihood of data x = (x, ..., x,), where
x; ~ Normal(#, 1) can be replaced with the likelihood of
S(x) =x ~ Normal(6,1/n).

> If we can only simulate x = R(6) we are unlikely to be able to prove
that a statistic is sufficient. However, we may specify a function S
we believe "summarizes” the features of the data that depend on 6.
Then we replace x with 5(x).
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ABC: Modelling the likelihood

» In realistic examples the acceptance rate or the accuracy will still be
too low.
> A solution: Try to simulate the "correct” 6:
» Example: If R(61) and R(62) are "on either side of x”, maybe
(61 + 62)/2 will result in a value closer to x.
> Note: Targeting the simulation of @ in this way means the
acceptance must be adjusted accordingly.
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