MSA101/MVE187 2018 Lecture 4

Petter Mostad

Chalmers University

September 13, 2018

Review of Bayesian inference in general

- ► A stochastic model (joint probability density) for all variables is constructed. Variables represent
 - Data
 - Unknown parameters
 - Values you would like to predict
- ▶ Find the posterior: The conditional distribution for the values you would like to predict, given that data varaibles are fixed to observed values.
- ▶ In the simplest models, this posterior can be computed analytically (using conjugacy).
- ▶ When the total number of unknown variables in the model is small (2-3?) you may use numerical discretization to find the posterior.
- ► For most models, we need other ways to do inference. The most common alternative is *simulation*:
 - An approximate sample from the posterior of all unknown variables is generated.
 - Inference is drawn from the coordinates of the approximate sample representing the variables of interest.

Example: Our old friend the Beta-Binomial situation

▶ 6 successes in 19 trials observed. Probability of success *p* has a flat prior on [0,1]. What is the probability of 4 or more successes in 7 new trials?

 \triangleright y: number of successes in first trials. y_n : number of successes in

new trials. Stochastic model:

$$\pi(y, y_n, p) = \pi(y \mid p)\pi(y_n \mid p)\pi(p) = \text{Binomial}(y; 19, p) \cdot \text{Binomial}(y_n; 7, p)$$

In this case we have conjugacy, and the posterior predictive can be computed analytically:

$$\pi(y_n \mid y) = {7 \choose y_n} \frac{B(1+6+y_n, 1+13+7-y_n)}{B(1+6, 1+13)}$$

Computing the values of this for $y_n = 4, 5, 6, 7$ gives probabilities that sum to 0.2035539.

- \triangleright We can also do this numerically by discretizing over p. (See R code).
- ▶ Finally, we can solve this by using simulation (See R code).

Monte Carlo Integration

 \blacktriangleright We want to estimate (compute) an integral (given a r.v. X)

$$I = \Pr(f(X) \le \alpha) = \int I(f(x) \le \alpha) \pi(x) \, dx = \int g(x) \pi(x) \, dx = E(g(X))$$

- We want to do it computing an average:
 - ▶ Simulate $x_1, ..., x_m$ from $\pi(x)$.
 - Compute

$$\hat{I}_m = \frac{1}{m} (g(x_1) + \cdots + g(x_m))$$

- ▶ We can often easily generate lots of data, i.e., *m* is very large.
- ▶ We use the Central Limit Theorem, to approximate that, as $m \to \infty$,

$$\hat{I}_m \sim \text{Normal}\left(I, Var\left(g(X)\right)/m\right)$$

as long as the first two moments of g(X) exists.

Monte Carlo Integration, cont.

▶ We can estimate Var(g(X)) with

$$Var(g(X)) \approx s^2 = \frac{1}{m-1} \sum_{i=1}^m \left(g(x_i) - \hat{l}_m \right)^2$$

▶ With this, we can estimate a 95% confidence interval for *I* with the sample variance

$$\hat{I}_m \pm 1.96 s / \sqrt{m}$$

with a similar interpretation as usual.

▶ A possibility is to compute and plot the estimate and the confidence interval as a function of *m*: See Example 3.3 in Robert.

Example: Estimating a proportion

In our main example above, we have $g(X) = I(f(X) \le \alpha)$, and we want to estimate $p = E(I(f(X) \le \alpha))$.

► Then

$$Var(I(f(X) \le \alpha)) = E(I(f(X) \le \alpha)) - E(I(f(X) \le \alpha))^2 = p - p^2.$$

- ▶ Thus the accuracy of estimates is proportional to $s = \sqrt{p(1-p)}$.
- ▶ The accuracy seems to improve when $p \rightarrow 0$, but what matters is the *relative* accuracy,

$$\sqrt{p(1-p)}/p = \sqrt{1/p-1}$$

which is bad when $p \to 0$.

▶ In other words: Estimating a tail quantile from a probability distribution by counting the number of times sampled values are in the tail is not very efficient.

Approximating quantiles by simulation

To compute an approximate interval containing, e.g., 90% of the prrobability for a random variable X:

- ▶ Simlulate $x_1, ..., x_n$ from X.
- ▶ Order them by size and fiind the 5'th and 95'th empirical percentile.
- ▶ In R, use, e.g., quantile(..).

Simulation from a uniform distribution

- ▶ Simulation from Uniform[0,1] is the basis of all computer based simulation.
- ▶ What does it mean that $x_1, ..., x_n \sim \text{Uniform}[0, 1]$ is "random"? A possible interpretation: We have no way to predict the coming numbers; the best guess for their distribution is Uniform[0, 1].
- ► The computer uses a deterministic function applied to a seed ("pseudo-random"). The seed can be set (in R with set.seed(...)) or is taken from the computer clock.
- ▶ It should be in practice impossible to apply any kind of visualiation or compute any kind of statistic which has properties other than those predicted when the sequence x_1, \ldots, x_n is *iid* Uniform[0, 1].

Simulating from discrete distributions

- ▶ If X is a random variable on a finite set of real numbers, the cumulative distribution can be computed in a vector. X can be simulated by comparing a uniform random variable U to the numbers in this vector. Example: Binomial distribution.
- ▶ If *X* is a random variable on a countable set of real numbers, one can use a list of the probabilities of the most probable outcomes, and expand this list as needed, if extreme values are simulated in a uniform distribution. Example: The Poisson distribution.

The inverse transform

- Let X be a random variable with invertible cumulative distribution function F(x). If $U \sim \text{Uniform}[0,1]$, then $F^{-1}(U)$ is a random sample from X.
- ► Note:

$$P(F^{-1}(U) \le \alpha) = Pr(F(F^{-1}(U)) \le F(\alpha)) = Pr(U \le F(\alpha)) = F(\alpha)$$

▶ Example: The exponential distribution $\text{Exp}(\lambda)$ has density $\pi(X) = \lambda \exp(-x\lambda)$ and cumulative distribution

$$F(x) = 1 - \exp(-\lambda x)$$

F(x) = u gives $F^{-1}(u) = -1/\lambda \log(1-u)$. As 1-u is also uniform, we can simulate with

$$-1/\lambda log(u)$$

The inverse transform, cont.

Example: Logistic distribution. Best defined by defining its cumulative distribution (for standard logistic distribution):

$$F(x) = 1/(1 + \exp(-x))$$

Easy to invert. The distribution can be adjusted with changing the mean and the scale, in a standard way.

► Example: Cauchy distribution. Density:

$$\pi(x) = 1/(\pi(1+x^2)).$$

The cumulative distribution is

$$F(x) = 1/2 + 1/\pi \arctan(x)$$

Easy to invert.

Transforming samples

▶ Example: One can prove that, if $X_1, ..., X_n$ is a random sample from Exp(1) then

$$\beta \sum_{i=1}^{n} X_i \sim \mathsf{Gamma}(n,\beta)$$

Example: One can prove that, if $X_1, ..., X_n$ is a random sample from Exp(1) then

$$\frac{\sum_{i=1}^{a} X_i}{\sum_{i=1}^{a+b} X_i} \sim \text{Beta}(a, b).$$

▶ Example: One can prove that, if U_1, U_2 is a random sample from Uniform[0, 1], then

$$\left(\sqrt{-2\log(U_1)}\cos(2\pi U_2),\sqrt{-2\log(U_1)}\sin(2\pi U_2)\right)$$

is a random sample from the bivariate distribution Normal $\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

Transformation of random variables

▶ Recall from basic probability theory: If f(x) is a density function, and x = h(y) is a monotone transformation, then the density function for y is

- ▶ If we apply the INVERSE of *h* on an variable with known density, we get the density of the resulting variable using the formula above.
- Example application: The non-informative prior for the precision τ of a Normal distribution is the *improper* distribution with "density" $\pi(\tau) \propto 1/\tau$. We have that $\tau = h(\sigma^2) = 1/\sigma^2$. We have that, when h(x) = 1/x, $h'(x) = -1/x^2$. Thus the corresponding non-informative prior for the variance σ^2 of a normal distribution is given as

$$\pi(\sigma^2) \propto rac{1}{1/\sigma^2} \left| -rac{1}{(\sigma^2)^2}
ight| = rac{1}{\sigma^2}$$

Transformation of multivariate random variables

▶ If x is a vector, if f(x) is a multivariate density function, and if x = h(y) is a bijective differentiable transformaation, then then multivariate density function for y is

where |J(y)| is the determinant of the Jacobian matrix for the vector function h(y).

 One application of this is to prove the identity used above to simulate from the normal distribution.

Simulating from the multivariate normal

▶ Recall that $x \sim \text{Normal}_k(\mu, \Sigma)$ if

$$\pi(x) = \frac{1}{|2\pi\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x-\mu)^t \Sigma^{-1}(x-\mu)\right)$$

- NOTE: If $x_1, ..., x_k$ are i.i.d Normal(0, 1) then $x = (x_1, ..., x_n)^t \sim \text{Normal}_k(0, I)$.
- ▶ If $x \sim \text{Normal}_k(0, I)$ then $Ax \sim \text{Normal}(0, AA^t)$.
- ▶ THUS: To simulate from Normal(μ , Σ):
 - Simulate k independent standard normal random variables into a vector x.
 - ▶ Compute the (lower triangular) Choleski decomposition S of Σ : We then have that $\Sigma = SS^t$.
 - ▶ Compute $Sx + \mu$: It is multivariate normal, and has the right expectation and variance matrix.

Simulating from a marginal distribution

- ▶ Generally: If you have a sample $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$ from a joint distribution of X and Y, then x_1, x_2, \ldots, x_n is a sample from the marginal distribution of X.
- ▶ Simple application: If $\tau \sim \mathsf{Gamma}(k/2,1/2)$ and $x \mid \tau \sim \mathsf{Normal}(0,1/\tau)$, then the marginal distribution of x is a Student t-distribution with k degrees of freedom. To simulate:
 - ▶ Draw τ from Gamma(k/2, 1/2).
 - ▶ Then draw x from Normal $(0, 1/\tau)$.
- Much more generally: To simulate for example from the predictive distribution for x_{NEW} in a Bayesian model, simulate from the joint distribution with density $\pi(x_{NEW}, \theta \mid x)$, where x is the data and θ is the parameters. Then take the coordinates of the sample pertaining to x_{NEW} .

Rejection sampling

- Sometimes we cannot easily simulate from a density f(x), (the "target density") but we *can* simulate from an "instrumental" density g(x) that approximates f(x).
- ▶ If we can find a constant M such that $f(x)/g(x) \le M$ for all x (and if f and g have the same support), we can use *rejection sampling* to sample from f:
 - ▶ Sample X using g(x).
 - ▶ Draw u uniformly on [0,1].
 - ▶ If $u \cdot M \le f(x)/g(x)$ accept x as a sample, otherwise reject x and start again.

Rejection sampling, cont.

- ▶ NOTE: Applicable in any dimension.
- ▶ The acceptance rate is 1/M, so we want to use a small M.
- NOTE: We may in fact do this with f(x) and g(x) equal to the densities up to a constant, still a valid method!
- NOTE: When g(x) integrates to 1, the integral of f(x) can be approximated as the acceptance rate multiplied by M.
- Example: Random variables with log-concave densities can be simulated with this method.