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Review of Bayesian inference in general

» A stochastic model (joint probability density) for all variables is
constructed. Variables represent
> Data
> Unknown parameters
> Values you would like to predict
» Find the posterior: The conditional distribution for the values you
would like to predict, given that data varaibles are fixed to observed
values.
» In the simplest models, this posterior can be computed analytically
(using conjugacy).
» When the total number of unknown variables in the model is small
(2-3?7) you may use numerical discretization to find the posterior.
» For most models, we need other ways to do inference. The most
common alternative is simulation:
> An approximate sample from the posterior of all unknown variables is
generated.
» Inference is drawn from the coordinates of the approximate sample
representing the variables of interest.
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Example: Our old friend the Beta-Binomial situation

> 6 successes in 19 trials observed. Probability of success p has a flat
prior on [0, 1]. What is the probability of 4 or more successes in 7
new trials?

» y: number of successes in first trials. y,: number of successes in
new trials. Stochastic model:

(¥, ¥n, p) = 7(y | p)7(yn | p)m(p) = Binomial(y; 19, p)-Binomial(y,; 7, p)

> In this case we have conjugacy, and the posterior predictive can be
computed analytically:

7) B1+6+y,1+13+7—y,)

7T(y”U)_(yn B(1+6,1+13)

Computing the values of this for y, = 4,5,6,7 gives probabilities
that sum to 0.2035539.

» We can also do this numerically by discretizing over p. (See R code).
» Finally, we can solve this by using simulation (See R code).
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Monte Carlo Integration

v

v

We want to estimate (compute) an integral (given a r.v. X)

I =Pr(f(X) <a)= /I(f(x) < a)m(x) dx = /g(x)ﬂ'(x) dx = E (g(X))

We want to do it computing an average:
> Simulate xi, ..., xm from m(x).
» Compute
~ 1
I (g(a) + -+ &g(xm))

T m
We can often easily generate lots of data, i.e., m is very large.
We use the Central Limit Theorem, to approximate that, as m — oo,

Iy ~ Normal (/, Var (g(X)) /m)

as long as the first two moments of g(X) exists.
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Monte Carlo Integration, cont.

» We can estimate Var(g(X)) with

1 N

Var(g(X) = £ = 203" (glo) — )’

» With this, we can estimate a 95% confidence interval for | with the
sample variance

Im £ 1.965/+/m
with a similar interpretation as usual.

» A possibility is to compute and plot the estimate and the confidence
interval as a function of m: See Example 3.3 in Robert.
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Example: Estimating a proportion

In our main example above, we have g(X) = I(f(X) < «), and we want
to estimate p = E(/(f(X) < «)).
» Then
Var(I(F(X) < a)) = E(I(F(X) < a)) — E(I(F(X) < ))? = p— .

» Thus the accuracy of estimates is proportional to s = /p(1 — p).

» The accuracy seems to improve when p — 0, but what matters is
the relative accuracy,

Ve —p)/p=+/1/p—1

which is bad when p — 0.

» In other words: Estimating a tail quantile from a probability
distribution by counting the number of times sampled values are in
the tail is not very efficient.
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Approximating quantiles by simulation

To compute an approximate interval containing, e.g., 90% of the
prrobability for a random variable X:

» Simlulate x, ..., x, from X.
» Order them by size and fiind the 5'th and 95'th empirical percentile.

» In R, use, e.g., quantile(..).
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Simulation of random variables

Simulation from a uniform distribution

» Simulation from Uniform[0, 1] is the basis of all computer based
simulation.

» What does it mean that xi, ..., x, ~ Uniform[0, 1] is "random”? A
possible interpretation: We have no way to predict the coming
numbers; the best guess for their distribution is Uniform[0, 1].

» The computer uses a deterministic function applied to a seed
(" pseudo-random™). The seed can be set (in R with
set.seed(...)) oris taken from the computer clock.

> It should be in practice impossible to apply any kind of visualiation
or compute any kind of statistic which has properties other than
those predicted when the sequence xi, . .., x, is iid Uniform[0, 1].
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Simulation of random variables

Simulating from discrete distributions

» If X is a random variable on a finite set of real numbers, the
cumulative distribution can be computed in a vector. X can be
simulated by comparing a uniform random variable U to the
numbers in this vector. Example: Binomial distribution.

» If X is a random variable on a countable set of real numbers, one
can use a list of the probabilities of the most probable outcomes,
and expand this list as needed, if extreme values are simulated in a
uniform distribution. Example: The Poisson distribution.
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Simulation of random variables

The inverse transform

» Let X be a random variable with invertible cumulative distribution
function F(x). If U ~ Uniform[0, 1], then F~1(U) is a random
sample from X.

» Note:
P(F(U) < @) = Pr(F(F7}(U)) < F(a)) = Pr(U < F(a)) = F(a)

» Example: The exponential distribution Exp(\) has density
m(X) = Aexp(—xA) and cumulative distribution

F(x) =1 —exp(—Ax)

F(x) = u gives F71(u) = —1/Xlog(1l — u). As 1 — u is also uniform,
we can simulate with
—1/Xog(u)
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Simulation of random variables

The inverse transform, cont.

» Example: Logistic distribution. Best defined by defining its
cumulative distribution (for standard logistic distribution):

F(x) = 1/(1 + exp(—x))

Easy to invert. The distribution can be adjusted with changing the
mean and the scale, in a standard way.

» Example: Cauchy distribution. Density:
7(x) = 1/(7(1 + x?)).
The cumulative distribution is
F(x) =1/2+ 1/marctan(x)

Easy to invert.
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Simulation of random variables

Transforming samples

» Example: One can prove that, if Xi,..., X, is a random sample
from Exp(1) then

ﬂZX,- ~ Gamma(n, B)

i=1

» Example: One can prove that, if Xy,..., X, is a random sample
from Exp(1) then
2 X
Z;ii ~ Beta(a, b).
D Xi

» Example: One can prove that, if Uy, U is a random sample from
Uniform[0, 1], then

(\/—2 log(Us) cos(27Us), /—2 log(Uy) sin(27rU2)>

is a random sample from the bivariate distribution

(6 )
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Simulation of random variables

Transformation of random variables

» Recall from basic probability theory: If f(x) is a density function,
and x = h(y) is a monotone transformation, then the density

function for y is
F(h(y))IH (y)l

> If we apply the INVERSE of h on an variable with known density, we
get the density of the resulting variable using the formula above.

» Example application: The non-informative prior for the precision 7
of a Normal distribution is the improper distribution with " density"”
7(7) o< 1/7. We have that 7 = h(c?) = 1/02. We have that, when
h(x) = 1/x, h'(x) = —1/x2. Thus the corresponding
non-informative prior for the variance o2 of a normal distribution is

given as
1
o2

1

, 1
W(U)O(W

(02)?
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Simulation of random variables

Transformation of multivariate random variables

> If x is a vector, if f(x) is a multivariate density function, and if
x = h(y) is a bijective differentiable transformration, then then
multivariate density function for y is

F(h(y))[J(y)]

where |J(y)| is the determinant of the Jacobian matrix for the vector
function h(y).

» One application of this is to prove the identity used above to
simulate from the normal distribution.

14/18



Simulation of random variables

Simulating from the multivariate normal

» Recall that x ~ Normalg(p, X) if
1 1 ty—1
m(x) = ESanE exp _E(X — 1) X (x — )
» NOTE: If xq,...,xx are i.i.d Normal(0, 1) then

x = (x1,...,xn)" ~ Normalk(0, /).
If x ~ Normal, (0, /) then Ax ~ Normal(0, AA?).
THUS: To simulate from Normal(u, X):
> Simulate k independent standard normal random variables into a
vector Xx.
» Compute the (lower triangular) Choleski decomposition S of X: We
then have that ¥ = SS*.
» Compute Sx + p: It is multivariate normal, and has the right
expectation and variance matrix.

v

v
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Simulation of random variables

Simulating from a marginal distribution

> Generally: If you have a sample (x1,y1), (x2, ¥2), - .., (Xn, ¥n) from a
joint distribution of X and Y/, then xi,x, ..., X, is a sample from
the marginal distribution of X.

» Simple application: If 7 ~ Gamma(k/2,1/2) and
x | 7 ~ Normal(0,1/7), then the marginal distribution of x is a
Student t-distribution with k degrees of freedom. To simulate:

» Draw 7 from Gamma(k/2,1/2).
> Then draw x from Normal(0,1/7).

» Much more generally: To simulate for example from the predictive
distribution for xygw in a Bayesian model, simulate from the joint
distribution with density 7(xnew, 0 | x), where x is the data and 6 is
the parameters. Then take the coordinates of the sample pertaining
to XneEw -
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Simulation of random variables

Rejection sampling

> Sometimes we cannot easily simulate from a density f(x), (the
"target density”) but we can simulate from an "instrumental”
density g(x) that approximates f(x).

» If we can find a constant M such that f(x)/g(x) < M for all x (and
if f and g have the same support), we can use rejection sampling to
sample from f:

> Sample X using g(x).
» Draw u uniformly on [0, 1].

» If u- M < f(x)/g(x) accept x as a sample, otherwise reject x and
start again.
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Simulation of random variables

Rejection sampling, cont.

» NOTE: Applicable in any dimension.
» The acceptance rate is 1/M, so we want to use a small M.

» NOTE: We may in fact do this with (x) and g(x) equal to the
densities up to a constant, still a valid method!

» NOTE: When g(x) integrates to 1, the integral of f(x) can be
approximated as the acceptance rate multiplied by M.

» Example: Random variables with log-concave densities can be
simulated with this method.
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