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Rejection sampling

I Sometimes we cannot easily simulate from a density f (x), (the
”target density”) but we can simulate from an ”instrumental”
density g(x) that approximates f (x).

I If we can find a constant M such that f (x)/g(x) ≤ M for all x (and
if f and g have the same support), we can use rejection sampling to
sample from f :

I Sample X using g(x).
I Draw u uniformly on [0, 1].
I If u ·M ≤ f (x)/g(x) accept x as a sample, otherwise reject x and

start again.
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Rejection sampling, cont.

I NOTE: Applicable in any dimension.

I The acceptance rate is 1/M, so we want to use a small M.

I NOTE: We may in fact do this with f (x) and g(x) equal to the
densities up to a constant, still a valid method!

I NOTE: When g(x) integrates to 1, the integral of f (x) can be
approximated as the acceptance rate multiplied by M.

I Example: Random variables with log-concave densities can be
simulated with this method.
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MCMC simulation

General idea of Markov chain Monte Carlo:

I Construct a Markov chain which has as its stationary distribution
the target distribution (the posterior) and simulate from this chain.

I From the simulations, extract something that is approximately a
sample frorm the posterior.

I Do Monte Carlo integration with this sample.
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Review of Markov chains

I Definition: A (discrete time, time-homogeneous) Markov chain with
kernel K is a sequence of random variables X (0),X (1),X (2), . . .
satisfying, for all t,

π(X (t) | X (0),X (1), . . . ,X (t−1)) = π(X (t) | X (t−1)) = K (X (t−1),X (t))

I A stationary distribution f is one satisfying

f (y) =

∫
K (x , y)f (x) dx

I Example: In the case of a state space with n possible values, a
distribution is represented by a vector of length n summing to 1, and
K is represented by an (n × n) matrix with rows summing to 1. A
stationary distribution is a (left) eigenvector for K .
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Conditions for existence of a unique stationary distribution

I Reducibility / irreducible

I Periodicity / aperiodic

I Transience / recurrent

I Ergodic / ergodicity

I In an irreducible, aperiodic, recurrent chain, X (n) converges to a
unique stationary distribution when n→∞.
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The detailed balance condition

I A Markov chain satisfies the detailed balance condition relative to a
density f if, for all x , y ,

f (x)K (x , y) = f (y)K (y , x)

where K (x , y) is the kernel of the Markov chain. Called a reversible
Markov chain.

I If a chain satisfies detailed balance relative to f , then f must be a
stationary distribution.

I Prove by integrating over x!
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The Metropolis-Hastings algorithm

Given a probability density f that we want to simulate from. Construct a
proposal function q(y | x) which for every x gives a probability density
for a proposed new value y . The algorithm starts with a choice of an
initial value x (0) for x , and then simulates x (t) given x (t−1). Specifically,
given x (t),

I Simulate a new value y according to q(y | x (t)).

I Compute the acceptance probability

ρ(x (t), y) = min

(
f (y)q(x (t) | y)

f (x (t))q(y | x (t))
, 1

)
.

I Set

x (t+1) =

{
y with probability ρ(x (t), y)
x (t) with probability 1− ρ(x (t), y)

8 / 14



The chain defined by Metropolis-Hastings satisfies the
detailed balance condition relative to f (x)

I Assume first that ρ(x , y) < 1 (with x 6= y). Then

f (x)K (x , y) = f (x)q(y | x)ρ(x , y) = f (x)q(y | x)
f (y)q(x | y)

f (x)q(y | x)

= f (y)q(x | y) = f (y)q(x | y)ρ(y , x) = f (y)K (y , x)

The next to last step is because ρ(y , x) = 1 when ρ(x , y) < 1.

I If we start with ρ(x , y) = 1 the situation is clearly symmetrical, and
we get the same result.
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The Ergodic theorem

I This theorem says that, when X (0), . . . ,X (t), . . . , is sampled from an
ergodic Markov chain with stationary distribution f , we have that

lim
T→∞

1

T

T∑
t=1

h(X (t)) = Ef [h(X )]

I When the sample is instead a random sample from f , this is the law
of large numbers; we then also have the extension to the Central
Limit Theorem, telling us how fast the convergence is.

I In the ergodic case, we still have convergence, but we don’t know as
easily how fast it is.
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Note that...

I ...the Metropolis-Hastings algorithm only requires knowledge of the
target density f (x) up to a constant not involving x , as the density
only appears in the quotient f (y)/f (x) in the algoritm.

I ...the Metropolis-Hastings algorith only requires knowledge of the
proposal density up to a constant, for the same reason.

I ...similarly, smart versions of the Metropolis-Hastings algorithm uses
proposal flunctions so that many factors in the acceptance
probability

f (y)q(x | y)

f (x)q(y | x)

cancel each other.
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Example: Symmetric proposal functions

Random walk Metropolis-Hastings

I We use

q(y | x) = g(y − x),where g(−x) = g(x) for all x .

for some density function g : The proposal becomes symmetric
around x

I This means that q(y | x) = q(x | y) and the acceptance probability
becomes

min(
f (y)

f (x)
, 1)

where f is the target density.

I Example: y = x + ε, where ε ∼ Normal(0,Σ) for some covariance
matrix Σ.

I The scaling of the size of the jumps can be very trickiy to get right,
to produce good convergence of the Markov chain.
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Example: Independent proposal functions

I A simple special case is when q(y | x) does not depend on x ; i.e.
proposals are independently generated from q(y).

I The generated values are however not independent: When the
proposed value is not accepted, the new value in the chan is equal to
the old.

I Note that, if the ratio f (x)/q(x) is unbounded, the chain can
become stuck in such point where this ratio is too high. Then the
convergence can be very bad.
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Gibbs sampling

I The idea: Sampling from conditional distributions
π(Xi | X1, . . . ,Xi−1,Xi+1, . . . ,Xk) for the target density. These are
in many cases easy to derive.

I Two stage and multistage Gibbs sampling.

I Why does it work? Easy to show that the Markov chain satisfies the
detailed balance condition.

I Examples RC 7.1, 7.2

I Example RC 7.3: Simulating from a posterior that does not have an
analytic form, but where each of the conditional distributions has an
analytic form.
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