MSA101/MVE187 2018 Lecture 8

Petter Mostad

Chalmers University

September 27, 2018

1/8

Checking convergence

» We know the results from MCMC will be correct in the limit when
the sample size — oo.

> Only in very special cases (e.g. using “coupling”) do we know how
big the sample size needs to be to get a certain accuracy.
> In practice “checking convergence” means checking for signs of
non-convergence or slow convergence (slow "mixing”):
> Monitor variable values and cumulative averages.
> Check autocorrelations for variables.
> Check acceptance rates (but higher is not always better, unless you
are using independent proposals!)
» Use multiple starting points for the MCMC chain!
> Use multiple parallell chains, and compare variace within chains with
variance between chains! (Special tests have been developed).

» An important ingredient is to understand your model and your
posterior, so that you can guess what might cause convergence
problems, and check for such problems.

2/8

The coda R package

v

Provides a convenient implementation of many proposed
convergence monitoring methods

Output from your own MCMC implementation can be converted to
appropriate objects with the mcmc () and the memc.list ()
functions.

Standard functions like plot and summary now give output relevant
to the MCMC setting.

A large number of specialized monitoring tools are also implemented.

3/8

Using the generated sample

» Remove the “first part” of the chain (the “burn-in").

» To obtain a sample that is approximately i.i.d., one may use
“thinning”: Keeping only each k'th simulated value in the chain.

» Not necessary unless you need the i.i.d. property! (“Effective sample
size”)

4/8

Reparametrizations

» Because the Gibbs sampler changes some parameters at the time, its
properties can be very sensitive to a reparametrizatioin.

» Generally, re-parametrizations that diminish correlation between
variables will benefit the convergence speed.

» Replacing a variable x with log(x) may make posterior densities
more symmetric, improving convergence.

> A simple way to improve convergence speed may be to make sure
observed data values average to zero and have similar variance.

5/8

Using improper priors

v

It is quite useful to use improper priors: Completely OK as long as
the posterior becomes proper.

v

Proving that the posterior is proper may be difficult and may
unfortunately be forgotten about.

v

The output of a Metropolis-Hastings or Gibbs algorithm applied to
an improper distribution will often look like some kind of random
walk. HOWEVER; it may not be direcly obvious to spot the problem
from the output!

Examples 7.18, 7.19 in RC

v

6/8

» Idea: Simulate the missing data given the parameters, and then
simulate the parameters given the missing data: Gibbs sampling

idea

» Example: Censored data, for example in survival analysis: We want
to learn about density f(- | 8) from sample where x, ..., x are
observed values and ¢, ..., ¢, are observations that the

corresponding x; is greater than some a;. The likelihood becomes

k n

T(xt, - X ey 6o | 0) = [06 [0) J](1 = F(ai | 6))
i=1 i=1
where F(- | 8) is the cumulative density.

» Simulating alternatively the missing data and distribution for the
parameters given all data may be easier than dealing with the
likelihood above.

» Example 7.6 in RC: A Normal(f, 1) model with data truncated at a.

7/8

Importance sampling

» MC integration computes

/ h(x)f(x) dx

where f(x) is a probability density function, by simulating xi, ..., Xn
according to f and taking the averages of h(x1),..., h(xm). The

result has accuracy 1/ Var(h(X))/m.

> Instead, we may re-write the integral as
h()f (X)}
—F X dX
S5 st

and simulate x; according to g and taking the averages of
h(xa)f(x1)/g(x1), - s h(xm)f (Xm)/ & (Xm)-

> A good idea if Var(h(X)f(X)/g(X)) is much smaller than
Var(h(X)).

8/8

