
MSA101/MVE187 2018 Lecture 8

Petter Mostad

Chalmers University

September 27, 2018

1 / 8



Checking convergence

I We know the results from MCMC will be correct in the limit when
the sample size →∞.

I Only in very special cases (e.g. using “coupling”) do we know how
big the sample size needs to be to get a certain accuracy.

I In practice “checking convergence” means checking for signs of
non-convergence or slow convergence (slow “mixing”):

I Monitor variable values and cumulative averages.
I Check autocorrelations for variables.
I Check acceptance rates (but higher is not always better, unless you

are using independent proposals!)
I Use multiple starting points for the MCMC chain!
I Use multiple parallell chains, and compare variace within chains with

variance between chains! (Special tests have been developed).

I An important ingredient is to understand your model and your
posterior, so that you can guess what might cause convergence
problems, and check for such problems.

2 / 8



The coda R package

I Provides a convenient implementation of many proposed
convergence monitoring methods

I Output from your own MCMC implementation can be converted to
appropriate objects with the mcmc() and the mcmc.list()

functions.

I Standard functions like plot and summary now give output relevant
to the MCMC setting.

I A large number of specialized monitoring tools are also implemented.

3 / 8



Using the generated sample

I Remove the “first part” of the chain (the “burn-in”).

I To obtain a sample that is approximately i.i.d., one may use
“thinning”: Keeping only each k ’th simulated value in the chain.

I Not necessary unless you need the i.i.d. property! (“Effective sample
size”)

4 / 8



Reparametrizations

I Because the Gibbs sampler changes some parameters at the time, its
properties can be very sensitive to a reparametrizatioin.

I Generally, re-parametrizations that diminish correlation between
variables will benefit the convergence speed.

I Replacing a variable x with log(x) may make posterior densities
more symmetric, improving convergence.

I A simple way to improve convergence speed may be to make sure
observed data values average to zero and have similar variance.

5 / 8



Using improper priors

I It is quite useful to use improper priors: Completely OK as long as
the posterior becomes proper.

I Proving that the posterior is proper may be difficult and may
unfortunately be forgotten about.

I The output of a Metropolis-Hastings or Gibbs algorithm applied to
an improper distribution will often look like some kind of random
walk. HOWEVER; it may not be direcly obvious to spot the problem
from the output!

I Examples 7.18, 7.19 in RC

6 / 8



Missing data

I Idea: Simulate the missing data given the parameters, and then
simulate the parameters given the missing data: Gibbs sampling
idea!

I Example: Censored data, for example in survival analysis: We want
to learn about density f (· | θ) from sample where x1, . . . , xk are
observed values and c1, . . . , cn are observations that the
corresponding xi is greater than some ai . The likelihood becomes

π(x1, . . . , xk , c1, . . . , cn | θ) =
k∏

i=1

f (xi | θ)
n∏

i=1

(1− F (ai | θ))

where F (· | θ) is the cumulative density.

I Simulating alternatively the missing data and distribution for the
parameters given all data may be easier than dealing with the
likelihood above.

I Example 7.6 in RC: A Normal(θ, 1) model with data truncated at a.

7 / 8



Importance sampling

I MC integration computes ∫
h(x)f (x) dx

where f (x) is a probability density function, by simulating x1, . . . , xm
according to f and taking the averages of h(x1), . . . , h(xm). The
result has accuracy

√
Var(h(X ))/m.

I Instead, we may re-write the integral as∫ [
h(x)f (x)

g(x)

]
g(x) dx

and simulate xi according to g and taking the averages of
h(x1)f (x1)/g(x1), . . . , h(xm)f (xm)/g(xm).

I A good idea if Var(h(X )f (X )/g(X )) is much smaller than
Var(h(X )).

8 / 8


