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Missing data

I Idea: Simulate the missing data given the parameters, and then
simulate the parameters given the missing data: Gibbs sampling
idea!

I Example: Censored data, for example in survival analysis: We want
to learn about density f (· | θ) from sample where x1, . . . , xk are
observed values and c1, . . . , cn are observations that the
corresponding xi is greater than some ai . The likelihood becomes

π(x1, . . . , xk , c1, . . . , cn | θ) =
k∏

i=1

f (xi | θ)
n∏

i=1

(1− F (ai | θ))

where F (· | θ) is the cumulative density.

I Simulating alternatively the missing data and distribution for the
parameters given all data may be easier than dealing with the
likelihood above.

I Example 7.6 in RC: A Normal(θ, 1) model with data truncated at a.
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Augmented data (or latent variables)

I Idea: Sometimes the model had been much simpler to handle if we
had observed certain parameters. So: Pretend that these are missing
data!

I Example 7.7 in RC: The model is the multinomial distribution

Multinomial(n;
1

2
+
θ

4
,

1

4
(1− θ),

1

4
(1− θ),

θ

4
)

I The likelihood for θ has a form which makes analytical computations
difficult.

I We extend the data (x1, x2, x3, x4) with a latent variable z , so that

(z , x1 − z , x2, x3, x4) ∼M5(n;
1

2
,
θ

4
,

1

4
(1− θ),

1

4
(1− θ),

θ

4
)

I What is the posterior probability of θ given the extended data and a
Beta prior?

I What is the conditional probability of z given θ and the actual data?

I Example 7.8 in RC: A more complex estension of Example 7.7.
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Mixture models

I Assume likelihood has form

π(x1, . . . , xn | θ) =
n∏

i=1

k∑
j=1

pj f (xi | ξj)

where θ = (ξ1, . . . , ξk) are the parameters.

I Analytical calculations difficult with the sums appearing in the
likelihood.

I Improved model: Add latent variables Z = (Z1, . . . ,Zn), where
Zi = j indicates the distribution xi comes from:

xi | zi ∼ f (xi | ξzi ) and Pr(zi = j) = pj

I The full conditional π(Zi | xi , θ) can be computed as the
probabilities that xi belongs to the various distributions f (xi | ξj),
when the parameters θ are given: Pr(Zi = j | x , θ) ∝ pj f (xi | ξj).

I The full conditional π(θ | x1, . . . , xn,Z1, . . . ,Zn) can be much easier
to handle than the original likelihood: No sums occur.
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Example

I Assume x | θ ∼
∑k

j=1 pk Normal(x ;µi , σ
2), where θ = (µ1, . . . , µk)

are unknonwn.

I Using a normal (or flat) prior on the µi , the posterior for each µi

given x1, . . . , xn, z1, . . . , zn can be found as a conjugate update using
those xi with zi = j .

I The posterior for each Zi can be computed by computing normal
densities, given the current value of θ.

I Example 7.9 in RC.

I Extension: Also the weights p = (p1, . . . , pk) may be considered
unknown, and estimated: Also here, we get a conjugate update if we
use a Dirichlet prior!
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Hybrid Gibbs Metropolis-Hastings methods

I The Metropolis-Hastings / Gibbs framework is very flexible: Often
you can mix and match together many different proposal functions
that the algorithm can switch between. As long as you can prove

1. The target distribution fulfills the detailed balance condition for each
(combination of) step(s).

2. The Markov chain defined by the whole algorithm has a unique
stationary distribution.

you are OK.
I The objective of using hybrid methods is generally to speed up

convergence.
I A good strategy may be to intersperse Gibbs sampling steps with

Metropolis-Hastings specialized steps that change many variables
simultaneously, to ”jump” from one area with high likelihood to
another.

I Another strategy may be to let the computer select randomly at
each step between using a step from one of k possible
Metropolis-Hastings algorithm for the target distribution. May be
easier than figuring out which one has good convergence properties
in various situations.
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Example 6.5 in RC

I Example 6.5: The likelihood is a mixture:

1

4
Normal(µ1, 1) +

3

4
Normal(µ2, 1)

I We simulate 400 data values using µ1 = 0, and µ2 = 2.5.

I With a prior for (µ1, µ2) that is uniform on [−2, 5]× [−2, 5] we get
a posterior density as in Figure 6.8.

I R-code for log-likelihood function on page 128.

I R-code for simulation from posterior on page 184.

I Result very dependent on ”scale” parameter. Can you think of
alternative approaches?
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The Laplace multivariate normal approximation

It is sometimes useful to consider the following approximation, when we
have a density written

π(θ) = C · exp(h(θ))

for some known function h and unknown constant C . If θ̂ is the mode of
the density, the second-degree Taylor approximation gives

h(θ) ≈ h(θ̂) +
1

2
(θ − θ̂)tH(θ̂)(θ − θ̂)

where H(θ) is the Hessian matrix of second derivatives. We get

π(θ) ≈ C · exp(h(θ̂)) exp

(
−1

2
(θ − θ̂)t((−H(θ̂))−1)−1(θ − θ̂)

)
.

This means that π(θ) might be approximated by a multivariate normal
distribution with expectation θ̂ and covariance matrix −H(θ̂)−1. If we
integrate both sides with respect to θ we get

C ≈ 1

exp(h(θ̂))|2π(−H(θ̂))−1|1/2
.
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The Langevin algorithm

I Problem: It takes MCMC “too long” to “find” areas with high
posterior density.

I Idea: Use not only the density value at X (t) but also the gradient of
the density at that point to make a smart proposal Y t .

I Concrete proposal function

Y t = X (t) +
σ2

2
∇ log f (X (t)) + σεt

I Nice to implement when formulas for the gradient can be computed
analytically.

I BUT: In many cases, the convergence of the Markov chain is not
improved: (One can get too easily stuck at a mode). Example 6.7 in
RC.
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Tempered MCMC

I Problem: The MCMC too easily gets stuck, and then does not reach
the areas of high posterior density.

I Idea: Start with a period of “improved searching” before
approaching the acutal MCMC formulas.

I The posterior exp (h(x)) is replaced with exp
(

h(x)
T

)
for some

positive “temperature” T : For large T this “evens out” the
posterior.

I Making T monotonically sink towards 1 gives an MCMC chain that
can jump more easily in the start while simulating from the correct
posterior in the end.

I Making T monotonically sink towards 0 gives an MCMC chain that
finds a maximum! If T sinks sufficiently slowly, one can prove it
finds the global optimum with probability 1. Simulated annealing.
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The slice sampler

I Idea: Do Gibbs sampling from ”the area under the density curve”.

I More formally, simmulate from the density

f (x , u) = I (0 < u < fx(x))

I Works even if the density fx is known only up to a constant.

I The challenge is to simulate x uniformly on {x : fx(x) > u}.
I Example 7.10 in RC.

I Generalization: When f (x) =
∏n

i=1 gi (x) we can define the joint
density

h(x , u1, . . . , un) =
n∏

i=1

I (0 < ui < gi (x))

I Simulate x uniformly on ∩ni=1{x : gi (x) > ui}.
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Example: Logistic regression

(Example 7.11 in RC, but book contains errors)

I Data (x1, y1), . . . , (xn, yn); yi ∼ Bernoulli(p(xi )); p(xi ) = exp(a+bxi )
1+exp(a+bxi )

I Using a flat prior, simulate from posterior for (a, b) using slice sampling.

I π(a, b | data) ∝
∏n

i=1

(
exp(a+bxi )

1+exp(a+bxi )

)yi ( 1
1+exp(a+bxi )

)1−yi
=
∏n

i=1
exp(a+bxi )

yi

1+exp(a+bxi )

I For i = 1, . . . , n, simulate ui ∼ Uniform
[
0, exp(a+bxi )

yi

1+exp(a+bxi )

]
.

I Simulate (a, b) uniformly on set satisfying, for all i , exp(a+bxi )
yi

1+exp(a+bxi )
> ui .

I Corresponds to a + bxi > log(ui/(1− ui )) for i with yi = 1, and
a + bxi < log((1− ui )/ui ) for i with yi = 0.

I Extend the Gibbs sampling, simulating for a

a ∼ Uniform

[
max
yi=1

(
log

ui
1− ui

− bxi

)
,minyi=0

(
log

1− ui
ui

− bxi

)]
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Logistic regression, cont.

I For b, we need to be more careful, simulating b uniformly in the interval
of numbers

I Greater than
(

log ui
1−ui
− a
)
/xi for i with yi = 1 and xi > 0.

I Smaller than
(

log ui
1−ui
− a
)
/xi for i with yi = 1 and xi < 0.

I Smaller than
(

log 1−ui
ui
− a
)
/xi for i with yi = 0 and xi > 0.

I Greater than
(

log 1−ui
ui
− a
)
/xi for i with yi = 0 and xi < 0.

I See R code on course home page for implementation.

I NOTE: a and b are highly correlated! Convergence improved by centering
data!

I Errors in RC:

I Confusion beween (a, b) and (α, β)
I Second and fourth formulas on page 220 are wrong.
I No need to use a prior for a and b to get this to work; use centering

instead.
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