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1. (a) The likelihood π(X | θ) is non-zero for θ ≥ X. As the prior is non-zero for θ ≥ M
and π(θ | X) ∝ π(X | θ)π(θ), we get that the posterior π(θ | X) is nonzero for θ ≥
max(M, X).

(b) If θ ∼ Pareto(M, α), we get, for θ ≥ max(M, X),

π(θ | X) ∝θ π(X | θ)π(θ) ∝θ
1
θ
· θ−(α+1) = θ−(α+1+1)

This means that θ | X ∼ Pareto(max(X,M), α + 1), so the posterior is in the same
family as the prior, and conjugacy is proved.

(c) We get, for X > 0,

π(X) =
π(X | θ)π(θ)
π(θ | X)

=

1
θ
· αMαθ−(α+1)

(α + 1)(max(M, X))α+1θ−(α+1+1) =
α

α + 1
·

Mα

(max(M, X))α+1

2. Assume we want to simulate from a density π(x) = C f (x). Assume there is another density
g(x) and a constant M such that Mg(x) ≥ C f (x) for all x for which π(x) > 0. Rejection
sampling then means sampling from π(x) using the the following steps:

(a) Sample x from the density g(x).

(b) Sample u from the Uniform(0, 1) density.

(c) If u > C f (x)
Mg(x) go back to step (a); otherwise, return x as the sampled value.

Note that the algorithm depends on C/M and not on C and M separately. Thus, it can
be performed also when the factor C is unknown, as long as one can find M/C so that
M/C · g(x) ≥ f (x).

3. (a)



(b) We may compute

f (θ) = C′ + log(π(y | θ)π(θ))

= C′ + log
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(c) The acceptance probability is given by

p = min
(
1,
π(θnew | y)q(θ | θnew)
π(θ | y)q(θnew | θ)

)
where q denotes the proposal function. The proposal function is symmetric in the µi

variables, but not in the remaining variables. Thus we get

q(θ | θnew)
q(θnew | θ)

=
Exponential(β; 2)

∏3
i=1 Exponential(τi; 2)

Exponential(βnew; 2)
∏3

i=1 Exponential(τnew
i ; 2)

=
exp (−2β − 2τ1 − 2τ2 − 2τ3)

exp
(
−2βnew − 2τnew

1 − 2τnew
2 − 2τnew

3

) .
We can use the function f computed in (a) to obtain π(θnew |y)

π(θ|y) = exp ( f (θnew) − f (θ)).
This gives us

p = min

1, exp

 f (θnew) − f (θ) + 2(βnew − β) + 2
3∑

i=1

(τnew
i − τi)

 .



(d) The conditional distributions for each variable given the other variables and the data
can most easily be read off from the logposterior computed in (b), at least for β and
the τi. We get

β | . . . ∼ Gamma

8, 2 +

3∑
i=1

τi


τi | . . . ∼ Gamma

7
2
, β +

1
2

3∑
j=1

(yi j − µi)2


We may do the same thing for the µi, but it may be easier to use the formula for
conjugate updating of normal distributions with fixed precisions. We then get

µi | · · · ∼ Normal
(
0 · 1 + τiyi1 + τiyi2 + τiyi3

1 + 3τi
,

1
1 + 3τi

)
∼ Normal

(
3τiyi·

1 + 3τi
,

1
1 + 3τi

)
where yi· =

∑3
j=1 yi j.

4. (a) In the graph, both X and Y are decendants of Z1. This means that there may be a
dependency between them via this variable, so X and Y are not necessarily indepen-
dent. One may also say that X and Y are not d-separated, as there is an active trail
X, A1,Z1,Y .

(b) X and Y are conditionally independent given Z1, i.e., it is true that X
∐

Y | Z1. As soon
as Z1 is observed, there is no dependency between Y and Z as they are not directly
linked; the variables A2, A3, A4,Z1 make no difference as they are not observed (or
conditioned on). One may also say that X and Y are d-separated given Z1 as there is
then no active trail from X to Y .

(c) X and Y are not necessarily conditionally independent given Z1 and Z2, i.e., it is not
necessarily true that X

∐
Y | {Z1,Z2}. The reason is that the conditioning on the Z2

creates a dependency between X and Y , as Z2 is a decendant of A1 and Y , and X is a
decendant of A1. One may also say that X and Y are not d-separated given {Z1,Z2},
as there is an active trail X, A1, A2,Z2, A3,Y .

5. (a) We have

log(π(x0, . . . , xT , y0, . . . , yT | τ)) = log

 T∏
i=0

π(yi | xi, τ)
T∏
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π(xi | xi−1)π(x0)
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(b) The expectation becomes

E
[
log(π(x0, . . . , xT , y0, . . . , yT | τ))

]
= C′+

T + 1
2

log τ−
τ

2
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i=0

(
y2

i − 2yi E[xi] + E
[
x2

i

])
,

so what we need is to compute the expectations E[xi] and E
[
x2

i

]
for all i. This can

be done with the Forward-Backward algorithm, using τ fixed at some value τold.
The Forward part will calculate recursively, for i = 0, . . . ,T , the probability mass
functions π(xi | y0, . . . , yi), while the Backward part will calculate recursively, for
i = T−1, . . . , 0, the probability mass functions π(yi+1, . . . , yT | xi). Then, the marginal
distribution for each xi can be computed using

π(xi | y0, . . . , yT ) ∝ π(yi+1, . . . , yT | xi)π(xi | y0, . . . , yi)

and from this probability mass function the two expectations E[xi] and E
[
x2

i

]
can be

computed.

(c) As log(π(τ)) = log(exp(−τ)) = −τ, we have

E
[
log(π(x0, . . . , xT , y0, . . . , yT | τ))

]
+ log(π(τ))
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T + 1
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τ

2
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− τ

One way to find the τ maximizing this expression is to recognize that exponentiating
it gives a function proportional to the density for a

Gamma

T + 1
2

, 1 +
1
2

T∑
i=0

(
y2

i − 2yi E[xi] + E
[
x2

i

])
density. Such a density has mode given by
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(d) The algorithm presented is deterministic, so it should never give different results

when started at the same point. However, when started at different points, it may
give different results, as it is an optimization algorithm, converging to a local, and not
necessarily a global, optimum.

6. Assume that i < j. That the joint distribution is a Gaussian Markov Random Field implies
that the density can be written on the form

π(x1, . . . , xn) = exp(− f (x1, . . . , xn))



where f (x1, . . . , xn) is a quadratic polynomial, i.e., we can write

f (x1, . . . , xn) =

n∑
k=1

akx2
k +

∑
1≤k≤s≤n

bksxkxs +

n∑
k=1

ckxk + d

where ak, bks, ck, and d are real numbers. Thus we can also write

π(x1, . . . , xn) =

 n∏
k=1

exp(−akx2
k)

  ∏
1≤k≤s≤n

exp(−bksxkxs)

  n∏
k=1

exp(−ckxk)

 exp(−d).

In the Markov network for the model, there is no line between variables Xi and X j if and
only if the density can be written as a product where no factors depend on both xi and x j.
We see that this happens if and only if the number bi j is zero.

The density of a Gaussian Markov Random Field can also be written as

π(x) ∝ exp
(
−

1
2

(x − µ)tP(x − µ)
)

where x = (x1, . . . , xn), µ is a vector of real numbers, and P is the symmetric precision
matrix. Comparing the two representations of the density, we see that 1

2 (pi j + p ji) = bi j, so
that pi j = bi j, as pi j = p ji because of symmetry. Thus there is no line between variables Xi

and X j if and only if pi j = 0.


