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1. (a) We have

π(p | x) ∝p π(x | p)π(p) ∝p px(1 − p)r pα−1(1 − p)β−1 ∝p pα+x−1(1 − p)β+r−1

so the posterior distribution becomes Beta(α + x, β + r).

(b) We may write

π(x) =
π(| p)π(p)
π(p | x)

=

(x+r−1)!
x!(r−1)! px(1 − p)r Γ(α+β)

Γ(α)Γ(β) pα−1(1 − p)β−1

Γ(α+β+x+r)
Γ(α+x)Γ(β+r) pα+x−1(1 − p)β+r−1

=
Γ(x + r)Γ(α + β)Γ(α + x)Γ(β + r)

Γ(x + 1)Γ(r)Γ(α + β + x + r)Γ(α)Γ(β)

(c) We get

π(p | x) ∝p π(x | p)π(p)

∝p px(1 − p)r
[
apα−1(1 − p)β−1 + bpγ−1(1 − p)δ−1

]
= apα+x−1(1 − p)β+r−1 + bpγ+x−1(1 − p)δ+r−1.

To find the exact form, it only remains to find the proportionality constant. Using
some constant C, we rewrite as

π(p | x) = Capα+x−1(1 − p)β+r−1 + Cbpγ+x−1(1 − p)δ+r−1

= Capα
′−1(1 − p)β

′−1 + Cbpγ
′−1(1 − p)δ

′−1

where we write α′ = α + x, β′ = β + r, γ′ = γ + x, and δ′ = δ + r. We can then write

π(p | x) = Ca
Γ(α′ + β′)
Γ(α′)Γ(β′)

Beta(p;α′, β′) + Cb
Γ(γ′ + δ′)
Γ(γ′)Γ(δ′)

Beta(p; γ′, δ′)

and integrating this over all possible p we get

Ca
Γ(α′ + β′)
Γ(α′)Γ(β′)

+ Cb
Γ(γ′ + δ′)
Γ(γ′)Γ(δ′)

= 1



and thus
C =

1

a Γ(α′+β′)
Γ(α′)Γ(β′) + b Γ(γ′+δ′)

Γ(γ′)Γ(δ′)

.

From this we can write the exact posterior as

π(p | x) =
a

a Γ(α′+β′)
Γ(α′)Γ(β′) + b Γ(γ′+δ′)

Γ(γ′)Γ(δ′)

pα
′−1(1 − p)β

′−1 +
b

a Γ(α′+β′)
Γ(α′)Γ(β′) + b Γ(γ′+δ′)

Γ(γ′)Γ(δ′)

pγ
′−1(1 − p)δ

′−1

or, if you like,

π(p | x) =
a Γ(α′+β′)

Γ(α′)Γ(β′)

a Γ(α′+β′)
Γ(α′)Γ(β′) + b Γ(γ′+δ′)

Γ(γ′)Γ(δ′)

Beta(p;α′, β′) +
b Γ(γ′+δ′)

Γ(γ′)Γ(δ′)

a Γ(α′+β′)
Γ(α′)Γ(β′) + b Γ(γ′+δ′)

Γ(γ′)Γ(δ′)

Beta(p; γ′, δ′).

2. (a) A possibility is rejection sampling, using an Exponential distribution with parameter
3 as a proposal density q(x). We then get

p(x)
q(x)

=
Ce−3x| sin x|
3 exp(−3x)

=
1
3

C| sin x| ≤
1
3

C

so the quotient of densities is bounded by C/3. The rejection sampling algorithm
then becomes:

i. Simulate x ∼ Exponential(3).
ii. Simulate u ∼ Uniform(0, 1).

iii. Accept x if uC
3 q(x) ≤ p(x), i.e., if u ≤ | sin x|, otherwise we return to the first

step.

It remains to describe how to simulate from the Exponential(3) distribution using
only simulations from the standard uniform distribution: Note that the cumulative
distribution function is F(x) = 1 − exp(−3x). Writing u0 = F(x), we get

x = F−1(u0) = −
1
3

log(1 − u0)

Thus one can simulate u0 ∼ Uniform(0, 1), and then compute x = −1
3 log(1 − u0).

(b) In rejection sampling where p(x) ≤ Mq(x), the rejection rate is 1/M. Thus in our
case it is 3/C, and an estimate for C is 3 divided by the frequency of rejection.

3. (a) We get

H[X] = E
[
− log

(
1

√
2πσ2

exp
(
−

1
2σ2 (X − µ)2

))]
= E

[
1
2

log(2πσ2)0
1

2σ2 (X − µ)2
]

=
1
2

log(2πσ2) +
1

2σ2σ
2

=
1
2

+
1
2

log(2π(σ2)



(b)

KL[p||q] =

∫
p(x) log

p(x)
q(x)

dx

4. In the answers formal arguments using d-separation can be given, but below, more intuitive
arguments are given instead.

(a) X and Y are independent: For example, one may remove, in this order, nodes Z6, Z5,
Z4, and Z3, as they are not observed and nothing depend on them. This leaves a net-
work where X and Y are in different components, and they are therefore necessarily
independent.

(b) X and Y are independent, with the same argument as above.

(c) X and Y are dependent: The fixed value of Z4 introduces a dependency between X
and Z3, and the fixed value of Z5 introduces a dependency between Z3 and Y . Thus
there is a dependency between X and Y .

5. (a) We get

log (π(α, β, γ | y))
= C0 + log (π(α)π(β)π(λ | α, β)π(y | λ))

= C1 + log(β2 exp(−7β)) + log
(
βα

Γ(α)
λα−1 exp(−βλ)

)
+ log(e−4λ(4λ)y)

= C2 + 2 log β − 7β + α log β − log(Γ(α)) + (α − 1) log λ − βλ − 4λ + y log λ

(b) Gibbs sampling would alternate between simulating from the three distributions π(α |
β, λ, y), π(β | α, λ, y), and π(λ | α, β, y), first generating some starting values for the
three parameters.
From the above, we have that, up to a constant C3 not depending on α,

log(π(α | β, λ, y)) = C3 + α log β − log(Γ(α)) + (α − 1) log λ

The easiest way to simulate from π(α | β, λ, y) would be to compute the above num-
bers for all 10 possible values of α, exponentiate these numbers, normalize them so
that they sum to 1, and simulate from this discrete distribution.
From (a) or directly from the specification of the model, one finds that the posterior
π(β | α, λ, y) because of conjugacy is the Gamma distribution Gamma(3 + α, 7 + λ).
Thus one may simulate from this distribution.
From (a) or directly from the specification of the model, one finds that the posterior
π(λ | α, β, y) because of conjugacy is the Gamma distribution Gamma(α + y, β + 4).
Thus one may simulate from this distribution.

(c) There is a large flexibility in the type of symmetric proposal function that could work,
and in practice one would need to adapt the proposal function to optimize conver-
gence speed. But as an example, one could for example change α with +1 or -1, with



a 50% chance for each choice, and independently add normally distributed variables
with zero expectation and variance 1 (for example) to each of β and λ. The new value
would be accepted with probability

a = min
(
1,
π(α′, β′, γ′ | y)
π(α, β, γ | y)

)
Note that the quotient in the expression above can be computed as the unknown factor
is the same in both π(α′, β′, γ′ | y) and π(α, β, γ | y). Using some starting point for the
simulation, it would eventually converge to a sample from the posterior π(α, β, λ | y).

6. The goal of the EM algorithm would be to find the maximum posterior estimate θ̂ for the
marginal posterior π(θ | y) ∝θ π(y | θ)π(θ).

The algorithm is iterative and finds a sequence of parameters θ0, θ1, . . . , so that each has a
higher posterior density and the limit is a local maximum for the posterior. At each step,
the algorithm can be formulated as going through two steps, the E step and the M step.

In the E step one calculates the function

f (θ) = Ez
[
log(π(y | θ, z)π(θ, z))

]
where z has the density π(z | y, θold), where θold is the value of θ in the previous iteration.
In the M step, this function is mazimized to find the next value for θ.

7. Variational Bayes is a method which finds a density that approximates a target density p(θ)
(it may be a posterior) for a parameter θ in cases where this density is difficult to find or
simulate from. The idea is to find the density q(θ) in a more restricted class of densities
which minimizes the Kullback-Leibler divergence (or distance) KL[q||p]. If for example
θ consists of many components, θ = (θ1, θ2, . . . , θk), then the restricted class could consist
of products over densities for each of the components θi. One may show that a density
q representing a local minumum for the KL divergence may be found with an iterative
procedure that decreases the KL divergence at each step. Specifically, one may use an
interative procedure that cycles through the components of θ, changing the density on one
component at a time.

8. Assume given a Hidden Markov Model (HMM) with observed variables Y1,Y2, . . . ,Ym and
an underlying Markov chain of hidden variables X1, X2, . . . , Xm. Assume the Xi variables
are discrete with a finite number of possible values. The goal of the Viterbi algorithm is to
find a sequence X̂1, X̂2, . . . , X̂m maximizing the probability of observing a given sequence
Y1, . . . ,Ym. The algorithm passes two times through the sequence, first from 1 through m
and then from m to 1. In the first pass, the values of Xi maximizing the likelihood, for each
possible value of Xi−1 is recorded. In the second pass, this information is used to construct
the sought sequence.


