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1. Introduction

This short note is written for the students in the course ”Financial Risk” MVE220
/ MAS400GU at Chalmers university of technology and University of Gothenburg and
treats some complementary material not covered in the lecture slides. The note considers
the normal approximation of the mixed binomial model using the central limit theorem as
well as Monte Carlo simulation of mixed binomial models. The material is not necessary
restricted to credit risk and can be applied to any situation that requires mixed binomial
models. Students in the course should read this paper carefully before solving task 2.2,2.3
and 2.4 in the credit risk project in the course ”Financial Risk” MVE220 / MAS400GU.

2. The central limit theorem

Let X1, X2, . . . , Xm be independent and equally distributed random variables where
E [Xi] = µ and Var(X) = σ2 < ∞ and define the so called sample mean Xm, given by

Xm =
1

m

n
∑

i=1

Xi. (2.1)

and note that E
[

Xm

]

= µ for any integer m. By applying Chebyshev’s inequality to the

random variable Xm we get

P
[
∣

∣Xm − µ
∣

∣ ≥ ε
]

≤ Var
(

Xm

)

ε2
=

Var
(

1
m

∑n
i=1 Xi

)

ε2
=

mσ2

m2ε2
=

σ2

mε2
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and we conclude that P
[

|Xm − µ| ≥ ε
]

→ 0 as m → ∞. Note that this holds for any

ε > 0. This result is simple the law of large numbers which says that Xm converges (in
probability) towards the mean E [Xi] = µ. Assume now that we want to find a sharper
estimate of probability of the convergence rate of Xm towards the constant µ as m → ∞.
This can be done by using the so called central limit theorem (CLT) studied in your first
statistic course.

Theorem 2.1. The central limit theorem (CLT) Let X1, X2, . . . , Xm be independent

and equally distributed random variables where E [Xi] = µ and Var(X) = σ2 < ∞. If

Xn = 1
m

∑n
i=1 Xi then it holds that

lim
n→∞

P

[

Xm − µ

σ/
√

m
≤ x

]

=

∫ x

−∞

e−y2/2

√
2π

dy for all x ∈ R. (2.2)

Hence, the central limit theorem states that if m is large enough, the random variable
Xm−µ
σ/

√
m

can be ”approximated” by a standard normal random variable with distribution

function N(x), that is

P

[

Xm − µ

σ/
√

m
≤ x

]

≈ N(x) =

∫ x

−∞

e−y2/2

√
2π

dy for x ∈ R. (2.3)

The central limit theorem is one of the important results in probability theory. It has
several important applications, for example

• constructing confidence intervals for the sample mean.
• analytically approximate discrete distributions, such as the binomial distribution.

Let us now study the latter application.

3. The normal approximation of the binomial distribution

Recall that a random variable Nm is binomially distributed with parameter m and p if

Nm =

m
∑

i=1

Xi (3.1)

where X1, X2, . . .Xn are independent Bernoulli distributed random variables with P [Xi = 1] =
p and P [Xi = 0] = 1 − p, that is

Xi =

{

1 with probability p
0 with probability1 − p

(3.2)

So for any integer j ≤ m the probability P [Nm = k] is given by

P [Nm = j] =

(

m

j

)

pj(1 − p)n−j (3.3)
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and thus for integers k ≤ m we have

P [Nm ≤ k] =

k
∑

j=0

(

m

j

)

pj(1 − p)n−j. (3.4)

Note that for large m the number
(

m
j

)

will be extremely big for some j and therefore

numerically truncated in standard math software. For example computing
(

54
23

)

in MatLab
renders the result

>> nchoosek(54,23)

Warning:Result may not be exact.Coefficient is greater than 10^15,

and is only good to 15 digits.

> In nchoosek at line 55

ans = 1.0859e+015

Thus, for large m we can not compute P [Nm ≤ k] with the formula (3.4). However, from
(3.1) we note that Nm =

∑m
i=1 Xi where the Xi-s are independent and equality distributed

with mean E [Xi] = p and finite variance variance Var(Xi) = p(1 − p). We can therefore
apply the central limit theorem (CLT) as follows. In the binomial distribution case we

have µ = p, σ =
√

p(1 − p) and Xm = Nm

m
. So the quantity Xm−µ

σ/
√

m
can be rewritten as

Xm − µ

σ/
√

m
=

Nm/m − p
√

p(1 − p)/
√

m
=

Nm − mp
√

m
√

p(1 − p)
=

Nm − mp
√

mp(1 − p)
(3.5)

and by the CLT we have that the random variable

Xm − µ

σ/
√

m
=

Nm − mp
√

mp(1 − p)
(3.6)

is distributed as a standard normal random variable when m is large enough. Hence, if
Nm is binomially distributed with parameter m and p we have for any integer k ≤ m that

P [Nm ≤ k] = P

[

Nm − mp
√

mp(1 − p)
≤ k − mp
√

mp(1 − p)

]

≈ N

(

k − mp
√

mp(1 − p)

)

(3.7)

where the last approximation is due to the central limit theorem when m is large. Further-
more, as a rule of thumb the approximation works best if mp(1− p) > 5 and thus becomes
better for larger m. Hence, the central limit theorem implies the following result

Theorem 3.1. Normal approximation of the binomial distribution Let Nm be

binomially distributed with parameter m and p. If mp(1 − p) > 5 then

P [Nm ≤ k] ≈ N

(

k − mp
√

mp(1 − p)

)

for k ≤ m (3.8)

where N(x) is the distribution function of a standard normal random variable.
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By adding 0.5 to the k in (3.8), the approximation of P [Nm ≤ k] can often improve
significantly. Hence, the quantity

N

(

k + 0.5 − mp
√

mp(1 − p)

)

for k ≤ m (3.9)

is often a better approximation to P [Nm ≤ k] than the right hand side in (3.8). In Table
1 we clearly see that (3.9) consistently produce better approximations of P [Nm ≤ k] for a
binomially distributed random variable Nm compared with the approximation (3.8).

Table 1. The distribution function P [Nm ≤ k] for a binomially distributed ran-
dom variable Nm and the two versions (3.8) and (3.9) of the normal
approximation of P [Nm ≤ k], for different values of (m,k, p). In all
cases it holds that mp(1 − p) > 5.

(m, k, p) P [Nm ≤ k] N

(

k−mp√
mp(1−p)

)

N

(

k+0.5−mp√
mp(1−p)

)

(40, 10, 0.2) 0.8392 0.7854 0.8385
(50, 10, 0.2) 0.5836 0.5000 0.5702
(60, 10, 0.2) 0.3234 0.2593 0.3141

(100, 12, 0.08) 0.9441 0.9298 0.9514
(100, 12, 0.1) 0.8018 0.7475 0.7977

4. The normal approximation of the mixed binomial distribution

Now consider a so called mixed binomial distribution. The mixed binomial distribution
works as follows. Let Z be a random variable on R with density fZ(z) and let p(Z) ∈ [0, 1]
be a random variable with distribution F (x) and mean p̄, that is

F (x) = P [p(Z) ≤ x] and E [p(Z)] =

∫ ∞

−∞

p(z)fZ(z)dz = p̄. (4.1)

Let X1, X2, . . .Xm be identically two-point distributed random variables in {0, 1}, i.e. Xi =
1 or Xi = 0. Furthermore, conditional on Z, the random variables X1, X2, . . .Xm are
independent and for Xi = 1 with probability p(Z), that is

P [Xi = 1 |Z] = p(Z). (4.2)

From rules of conditional probabilities we get that

P [Xi = 1] = E [Xi] = E [E [Xi |Z]] = E [p(Z)] =

∫ ∞

−∞

p(z)fZ(z)dz = p̄.

where the last equality is due to (4.1). Next, define Nm as

Nm =
m
∑

i=1

Xi. (4.3)
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From the above model we conclude that conditionally on Z the random variable Nm will
be a binomially distributed with parameter m and p(Z) so that

P [Nm = j |Z] =

(

m

j

)

p(Z)j(1 − p(Z))m−j

and since P [Nm = j] = E [P [Nm = j |Z]] = E

[

(

m
j

)

p(Z)j(1 − p(Z))j
]

it holds that

P [Nm = j] =

∫ ∞

−∞

(

m

j

)

p(z)j(1 − p(z))m−jfZ(z)dz. (4.4)

Furthermore, as in the standard binomial model we then get that

P [Nm ≤ k] =
n
∑

j=0

(

m

j

)
∫ ∞

−∞

p(z)j(1 − p(z))m−jfZ(z)dz. (4.5)

Note that computing P [Nm ≤ k] in (4.5) suffers from the same problems and challenges as
in the standard binomial model. However, just as in the standard binomial model we can
exploit the central limit theorem as follows. So conditional on Z the Xi-s are independent
and equality distributed with conditional mean E [Xi |Z] = p(Z) and finite conditional
variance Var(Xi|Z) = p(Z)(1 − p(Z)). Hence, conditional on Z we can apply the central
limit theorem. and then follow the same computations as in Section 3, especially Equation
(3.7) then renders that

P [Nm ≤ k |Z] = P

[

Nm − mp(Z)
√

mp(Z)(1 − p(Z))
≤ k − mp(Z)
√

mp(Z)(1 − p(Z))

]

≈ N

(

k − mp(Z)
√

mp(Z)(1 − p(Z)

) (4.6)

where of assume that P [0 < p(Z) < 1] = 1, that is P [p(Z) = 1] = P [p(Z) = 0] = 0, so that
the nominator is well defined. Next, noting that (4.6) implies

P [Nm ≤ k] = E [P [Nm ≤ k |Z]] = E

[

N

(

k − mp(Z)
√

mp(Z)(1 − p(Z)

)]

(4.7)

which gives that

P [Nm ≤ k] ≈
∫ ∞

−∞

N

(

k − mp(z)
√

mp(z)(1 − p(z))

)

fZ(z)dz (4.8)

where fZ(z) is the density of Z as defined in Equation (4.1). Note that we here ignore
the fact that the rule of thumb, 5 > mp(z)(1 − p(z)), sometimes may be violated, and do
not bother about this fact. So (4.8) is just a generalization of the normal approximation
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formula (3.8) in Theorem 3.1. As already remarked, by adding 0.5 to the k in (4.6), the
approximation of P [Nm ≤ k] can often improve significantly. Hence, the quantity

∫ ∞

−∞

N

(

k + 0.5 − mp(z)
√

mp(z)(1 − p(z)

)

fZ(z)dz for k ≤ m (4.9)

is often a better approximation to P [Nm ≤ k] than the right hand side in (4.8).
Note that given explicit expressions of the density fZ(z) and the probability p(Z), then

both formulas (4.8) and (4.9) are easy to evaluate with numerical quadrature, for example
using quad in matlab.

5. The law of large numbers approximation of a mixed binomial
distribution

Consider the same mixed binomial model as presented in Section 4. Then from the
lecture slides in the ”Financial risk”-course we know the following result.

Theorem 5.1. The approximation of the mixed binomial distribution using the
law of large numbers With notation as above, let Nm =

∑m
i=1 Xi be a mixed binomially

distributed random variable where P [Xi = 1 |Z] = p(Z). Then for any x ∈ [0, 1] it holds

that

P

[

Nm

m
≤ x

]

→ P [p(Z) ≤ x] = F (x) as m → ∞. (5.1)

Thus, Theorem (5.1) implies that when m is ”large” we have the following approximation
for any integer k ≤ m

P [Nm ≤ k] = P

[

Nm

m
≤ k

m

]

≈ F

(

k

m

)

(5.2)

where where F (x) = P [p(Z) ≤ x] for x ∈ [0, 1]. Hence, besides the CLT-formulas (4.8)
and (4.9), then Equation (5.2) is another alternative to approximate the probabilities
P [Nm ≤ k].

6. Finding the mixed binomial distribution by using Monte Carlo
simulations

From Section 4 and Section 5 we conclude that we have at least two (or three) formulas
for approximating the mixed binomial distribution P [Nm ≤ k], which are the Central limit
(CLT) formulas (4.8) and (4.9), and the law of large number (LLN) formula (5.2). Both
of these two (or three) formulas assumes that m is large, and the following question now
arise is: Which of the CLT and LLN approximations is the best approximation to the
value P [Nm ≤ k]? In order to answer this question we must of course be able to compute
the exact value of the probability P [Nm ≤ k]. However, as we have seen it is in general
difficult to compute the exact distribution P [Nm ≤ k] via the formula (4.5), which in fact
was the motivation of using the CLT and LLN as approximations. Thus, how can we find
such a close approximation of P [Nm ≤ k] as possible? One possibility to find an accurate
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estimate of this quantity is to use Monte Carlo simulation which simply means that we
simulate Nm many times (typically 105 or more times) and for each such simulation check
if Nm ≤ k. By counting how many times the event Nm ≤ k will be true and then dividing
with the number of simulations, we will by the law of large numbers get an estimate of the
probability P [Nm ≤ k]. Let us formalize this argument more rigourously.

Computing P [Nm ≤ k] using Monte-Carlo simulation

1. Simulate n independent copies of Nm, that is N
(1)
m , N

(2)
m , . . . , N

(n)
m .

2. Define n random variables Y
(k)
1 , . . . Y

(k)
n such that

Y
(k)
j =

{

1 if N
(j)
m ≤ k

0 otherwise, i.e. if N
(j)
m > k

(6.1)

3. Compute 1
n

∑n
j=1 Y

(k)
j

4. Let 1
n

∑n
j=1 Y

(k)
j be an estimate of the probability P [Nm ≤ k].

Now, let us motivate why this so called Monte-Carlo simulation algorithm will yield an
approximate of P [Nm ≤ k]. as the number of simulations n increases (typically n is given
by e.g. n = 103, 104, 105, 106 etc).

For notational convenience let p
(k)
m = P [Nm ≤ k]. Note that by construction we have

that E

[

Y
(k)
j

]

= P [Nm ≤ k] = p
(k)
m because

E

[

Y
(k)
j

]

= 1 · p(k)
m + 0 ·

(

1 − p(k)
m

)

= p(k)
m = P [Nm ≤ k] .

Furthermore, since Y
(k)
j is a two-point distributed random variable on {0, 1} we have that

Var
(

Y
(k)
j

)

= p(k)
m (1 − p(k)

m ). (6.2)

Next, pick an arbitrary ε > 0. Since Y
(k)
1 , . . . Y

(k)
n are independent and equally distributed

we can apply Chebyshev’s inequality together with Equation (6.2) and retrieve

P

[
∣

∣

∣

∣

∣

1

n

n
∑

j=1

Y
(k)
j − p(k)

m

∣

∣

∣

∣

∣

≥ ε

]

≤
Var

(

1
n

∑n
j=1 Y

(k)
j

)

ε2

=

1
n2 Var

(

∑n
j=1 Y

(k)
j

)

ε2

=

1
n2 nVar

(

Y
(k)
j

)

ε2

=
p

(k)
m (1 − p

(k)
m )

nε2
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that is,

P

[
∣

∣

∣

∣

∣

1

n

n
∑

j=1

Y
(k)
j − p(k)

m

∣

∣

∣

∣

∣

≥ ε

]

≤ p
(k)
m (1 − p

(k)
m )

nε2

and we conclude that P

[

| 1
n

∑n
j=1 Y

(k)
j − p

(k)
m | ≥ ε

]

→ 0 as n → ∞. Note that this holds

for any ε > 0. Hence, this is just a version the law of large numbers applied to the

estimate 1
n

∑n
j=1 Y

(k)
j of the probability p

(k)
m = P [Nm ≤ k] as n → ∞. So the random

variable 1
n

∑n
j=1 Y

(k)
j will converge in probability towards the constant p

(k)
m = P [Nm ≤ k]

as n → ∞. In practice this means that for large values of n, the simulated random variable
1
n

∑n
j=1 Y

(k)
j will be (very) close to the value p

(k)
m = P [Nm ≤ k] which is what we wanted

to compute.

Finally, we here remark that step 1 in the above Monte-Carlo simulating algorithm is in
turn split into the following steps.

Monte-Carlo simulation of X1, . . . , Xm and N
(j)
m

For each j = 1, 2, . . . , n do the following:

1.1. Simulate the random variable Z and compute p(Z) ∈ [0, 1].
1.2. Simulate the i.i.d sequence U1, U2, . . . , Um where Ui is uniformly distributed on [0, 1]

and independent of Z.
1.3. For each i = 1, 2, . . . , m define Xi as

Xi =

{

1 if Ui ≤ p(Z)
0 otherwise, i.e. if Ui > p(Z)

(6.3)

1.4. Compute N
(j)
m =

∑m
i=1 Xi.

Let us motivate why the above algorithm for generating the random variables X1, . . . , Xm

implies that P [Xi = 1 |Z] = p(Z) for each i = 1, 2, . . . , m. Let FUi
(x) = x be the distribu-

tion function for Ui which is uniformly distributed on [0, 1]. Given p(Z) we then have by
construction that

P [Xi = 1 |Z] = P [Ui ≤ p(Z) |Z] = FUi
(p(Z)) = p(Z) (6.4)

where the second equality is due to the fact that Ui is independent of Z and the equality
follows from the observation FUi

(x) = x since Ui is uniformly distributed on [0, 1].

6.1. Simulating X1, . . . , Xm in the mixed Merton binomial model. Consider the
mixed Merton binomial model. We know want to simulate the m Bernoulli random vari-
ables X1, . . . , Xm for a simulated value Z. In the mixed Merton binomial model Z is a
standard normal random variable and p(Z) is given by

p(Z) = N

(

N−1 (p̄) −√
ρZ√

1 − ρ

)

(6.1.1)
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where N(x) is the distribution function of a standard normal distribution and p̄ = P [Xi = 1]
while ρ is the correlation parameters.

So simulating X1, . . . , Xm can of course be done with the above algorithm in the steps
1.1 to step 1.4. However in the mixed Merton binomial model there is an alternative, and
maybe more straightforward way to simulate X1, . . . , Xm given Z. To see this, recall from
the slides of the second credit risk lecture that (see slide 7 in lecture 2 (credit risk)),

Xi = 1 is equivalent with Yi <
N−1 (p̄) −√

ρZ√
1 − ρ

(6.1.2)

where Y1, Y2, . . . , Ym are independent and equally distributed standard normal random
variables. Then we have the following alternative algorithm to steps 1.1 to step 1.4 above.

Alternative Monte-Carlo simulation of X1, . . . , Xm and N
(j)
m in the mixed Mer-

ton binomial model

For each j = 1, 2, . . . , n do the following:

A1.1. Simulate the standard random variable Z.
A1.2. Simulate the independent and equally distributed standard normal random vari-

ables Y1, Y2, . . . , Ym all independent of Z
A1.3. For each i = 1, 2, . . . , m define Xi as

Xi =

{

1 if Yi ≤ N−1(p̄)−
√

ρZ
√

1−ρ

0 otherwise, i.e. if Yi >
N−1(p̄)−

√
ρZ

√
1−ρ

(6.1.3)

A1.4. Compute N
(j)
m =

∑m
i=1 Xi.

The above algorithm is thus an alternative to the algorithm in steps 1.1 to step 1.4
above, where we now avoid computing p(Z) in (6.1.1).

(Alexander Herbertsson), Centre For Finance, Department of Economics, School of
Business, Economics and Law, University of Gothenburg. P.O Box 640, SE-405 30 Göteborg,
Sweden
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