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Content of lecture

Short discussion of the important components of credit risk

Study different static portfolio credit risk models.

Discussion of the binomial loss model

Discussion of the mixed binomial loss model

Study of a mixed binomial loss model with a beta distribution

Study of a mixed binomial loss model with a logit-normal distribution

A short discussion of Value-at-Risk and Expected shortfall
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Definition of Credit Risk

Credit risk

− the risk that an obligor does not honor his payments

Example of an obligor:

A company that have borrowed money from a bank

A company that has issued bonds.

A household that have borrowed money from a bank, to buy a house

A bank that has entered into a bilateral financial contract (e.g an
interest rate swap) with another bank.

Example of defaults are

A company goes bankrupt.

As company fails to pay a coupon on time, for some of its issued
bonds.

A household fails to pay amortization or interest rate on their loan.
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Credit Risk

Credit risk can be decomposed into:

arrival risk, the risk connected to whether or not a default will
happen in a given time-period, for a obligor

timing risk, the risk connected to the uncertainness of the exact
time-point of the arrival risk (will not be studied in this course)

recovery risk. This is the risk connected to the size of the actual loss
if default occurs (will not be studied in this course, we let the
recovery be fixed)

default dependency risk, the risk that several obligors jointly
defaults during some specific time period. This is one of the most
crucial risk factors that has to be considered in a credit portfolio
framework.

The coming two lectures focuses only on default dependency risk.

Alexander Herbertsson (Univ. of Gothenburg) Financial Risk: Credit Risk, Lecture 1 November 13, 2012 4 / 36



Portfolio Credit Risk is important

”Modelling dependence between default events and between credit quality
changes is, in practice, one of the biggest challenges of credit risk models”.,
David Lando, ”Credit Risk Modeling”, p. 213.

”Default correlation and default dependency modelling is probably the most
interesting and also the most demanding open problem in the pricing of
credit derivatives. While many single-name credit derivatives are very similar
to other non-credit related derivatives in the default-free world (e.g.
interest-rate swaps, options), basket and portfolio credit derivative have
entirely new risks and features.”,
Philipp Schönbucher, ”Credit derivatives pricing models”, p. 288.

”Empirically reasonable models for correlated defaults are central to the
credit risk-management and pricing systems of major financial institutions.”,
Darrell Duffie and Kenneth Singleton, ”Credit Risk: Pricing, Measurement
and Management” , p. 229.
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Portfolio Credit Risk is important

Portfolio credit risk models differ greatly depending on what types of
portfolios, and what type of questions that should be considered. For
example,

models with respect to risk management, such as credit Value-at-Risk
(VaR) and expected shortfall (ES)

models with respect to valuation of portfolio credit derivatives, such as
CDO´s and basket default swaps

In both cases we need to consider default dependency risk, but....

...in risk management modelling (e.g. VaR, ES), the timing risk is ignored,
and one often talk about static credit portfolio models,

...while, when pricing credit derivatives, timing risk must be carefully
modeled (not treated here)

The coming two lectures focuses only on static credit portfolio models,
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Literature

The slides for the coming two lectures are rather self-contained, except for some
results taken from Hult & Lindskog.

The content of the lecture today and the next lecture is partly based on materials
presented in

Lecture notes by Henrik Hult and Filip Lindskog (Hult & Lindskog)
”Mathematical Modeling and Statistical Methods for Risk Management”,
however, these notes are no longer public available, instead see e.g the book
Hult, Lindskog, Hammerlid and Rehn: ”Risk and portfolio analysis -
principles and methods”.

”Quantitative Risk Management” by McNeil A., Frey, R. and Embrechts, P.
(Princeton University Press)

”Credit Risk Modeling: Theory and Applications” by Lando, D . (Princeton
University Press)
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Static Models for homogeneous credit portfolios

Today we will consider the following static modes for a homogeneous
credit portfolio:

The binomial model

The mixed binomial model

To understand mixed binomial models, we give a short introduction of
conditional expectations

After this we look at two different mixed binomial models.

We also shortly discuss Value-at-Risk and Expected shortfall

Next lecture we consider a mixed binomial model inspired by the
Merton framework.
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The binomial model for independent defaults

Consider a homogeneous credit portfolio model with m obligors, and where we
each obligor can default up to fixed time point, say T . Each obligor have
identical credit loss at a default, say ℓ. Here ℓ is a constant.

Let Xi be a random variable such that

Xi =

{

1 if obligor i defaults before time T
0 otherwise, i.e. if obligor i survives up to time T

(1)

We assume that the random variables X1, X2, . . . Xm are i.i.d, that is they
are all independent with identical distribution.

Furthermore P [Xi = 1] = p so that P [Xi = 0] = 1 − p.

The total credit loss in the portfolio at time T , called Lm, is then given by

Lm =

m
∑

i=1

ℓXi = ℓ

m
∑

i=1

Xi = ℓNm where Nm =

m
∑

i=1

Xi

thus, Nm is the number of defaults in the portfolio up to time T .

Since ℓ is a constant, we have P [Lm = kℓ] = P [Nm = k], so it is enough to
study the distribution of Nm.
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The binomial model for independent defaults, cont.

Since X1, X2, . . .Xm are i.i.d with with P [Xi = 1] = p we conclude that
Nm =

∑m

i=1 Xi is binomially distributed with parameters m and p, that is
Nm ∼ Bin(m, p).

This means that

P [Nm = k] =

(

m

k

)

pk(1 − p)m−k

Recalling the binomial theorem (a + b)m =
∑m

k=0

(

m

k

)

akbm−k we see that

m
∑

k=0

P [Nm = k ] =

m
∑

k=0

(

m

k

)

pk(1 − p)m−k = (p + (1 − p))m = 1

proving that Bin(m, p) is a distribution.

Furthermore, E [Nm] = mp since

E [Nm] = E

[

m
∑

i=1

Xi

]

=

m
∑

i=1

E [Xi ] = mp.
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The binomial model for independent defaults, cont.
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The binomial model for independent defaults, cont.

The binomial distribution have very thin ”tails”, that is, it is extremely
unlikely to have many losses (see figure).

For example, if p = 5% and m = 50 we have that P [Nm ≥ 8] = 1.2% and
for p = 10% and m = 50 we get P [Nm ≥ 10] = 5.5%

The main reason for these small numbers (even for large individual default
probabiltes) is due to the independence assumption. To see this, recall that
the variance of a random variable Var(X ) measures the degree of the

deviation of X around its mean, i.e. Var(X ) = E

[

(X − E [X ])2
]

.

Since X1, X2, . . .Xm are independent we have that

Var(Nm) = Var

(

m
∑

i=1

Xi

)

=

m
∑

i=1

Var(Xi ) = mp(1 − p) (2)

where the second equality is due the independence assumption.
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The binomial model for independent defaults, cont.

Furthermore, by Chebyshev’s inequality we have that for any random
varialbe X , and any c > 0 it holds

P [|X − E [X ] | ≥ c] ≤
Var(X )

c2

So if p = 5% and m = 50 we have that Var(Nm) = 50p(1 − p) = 2.375 and
and E [Nm] = 50p = 2.5 implying that having say, 6 more, or less losses than
expected, is smaller or equal than 6.6%, since by Chebyshev’s inequality

P [|Nm − 2.5| ≥ 6] ≤
2.375

36
= 6.6%

Hence, the probability of having a total number of losses outside the interval
2.5 ± 6, i.e. outside the interval [0, 8.5], is smaller than 6.6%.

In fact, one can show that the deviation of the average number of defaults
in the portfolio, Nm

m
, from the constant p (where p = E

[

Nm

m

]

) goes to zero

as m → ∞. Thus, Nm

m
converges towards a constant as m → ∞ (the law of

large numbers).

Alexander Herbertsson (Univ. of Gothenburg) Financial Risk: Credit Risk, Lecture 1 November 13, 2012 13 / 36



Independent defaults and the law of large numbers

By applying Chebyshev’s inequality to the random variable Nm

m
together with

Equation (2) we get

P

[
∣

∣

∣

∣

Nm

m
− p

∣

∣

∣

∣

≥ ε

]

≤
Var

(

Nm

m

)

ε2
=

1
m2 Var (Nm)

ε2
=

mp(1 − p)

m2ε2
=

p(1 − p)

mε2

and we conclude that P
[

|Nm

m
− p| ≥ ε

]

→ 0 as m → ∞. Note that this
holds for any ε > 0.

This result is called the weak law of large numbers, and says that the
average number of defaults in the portfolio, i.e. Nm

m
, converges (in

probability) to the constant p which is the individual default probability.

One can also show the so called strong law of large numbers, that is

P

[

Nm

m
→ p when m → ∞

]

= 1

and we say that Nm

m
converges almost surely to the constant p. In these

lectures we write Nm

m
→ p to indicate almost surely convergence.
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Independent defaults lead to unrealistic loss scenarios

We conclude that the independence assumption, or more generally, the i.i.d
assumption for the individual default indicators X1, X2, . . . Xm implies that
the average number of defaults in the portfolio Nm

m
converges to the

constant p almost surely.

Given the recent credit crisis, the assumption of independent defaults is
ridiculous. It is an empirical fact, observed many times in the history, that
defaults tend to cluster. Hence, the fraction of defaults in the portfolio Nm

m

will often have values much bigger than the constant p.

Consequently, the empirical (i.e. observed) density for Nm

m
will have much

more ”fatter” tails compared with the binomial distribution.

We will therefore next look at portfolio credit models that can produce more
realistic loss scenarios, with densities for Nm

m
that have fat tails, and which

not implies that the average number of defaults in the portfolio Nm

m

converges to a constant with probability 1, when m → ∞.
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Conditional expectations

Before we continue this lecture, we need to introduce the concept of conditional
expectations

Let L2 denote the space of all random variables X such that E
[

X 2
]

< ∞

Let Z be a random variable and let L2(Z ) ⊆ L2 denote the space of all
random variables Y such that Y = g(Z ) for some function g and Y ∈ L2

Note that E [X ] is the value µ that minimizes the quantity E
[

(X − µ)2
]

.
Inspired by this, we define the conditional expectation E [X |Z ] as follows:

Definition of conditional expectations

For a random variable Z , and for X ∈ L2, the conditional expectation E [X |Z ] is
the random variable Y ∈ L2(Z ) that minimizes E

[

(X − Y )2
]

.

Intuitively, we can think of E [X |Z ] as the orthogonal projection of X onto
the space L2(Z ), where the scalar product 〈X , Y 〉 is defined as
〈X , Y 〉 = E [XY ].
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Properties of conditional expectations

For a random variable Z it is possible to show the following properties

1. If X ∈ L2, then E [E [X |Z ]] = E [X ]

2. If Y ∈ L2(Z ), then E [YX |Z ] = Y E [X |Z ]

3. If X ∈ L2, we define Var(X |Z ) as

Var(X |Z ) = E
[

X 2
∣

∣Z
]

− E [X |Z ]
2

and it holds that Var(X ) = E [Var(X |Z )] + Var (E [X |Z ]).

Furthermore, for an event A, we can define the conditional probability P [A |Z ] as

P [A |Z ] = E [ 1A |Z ]

where 1A is the indicator function for the event A (note that 1A is a random
variable). An example: if X ∈ {a, b}, let A = {X = a}, and we get that
P [X = a |Z ] = E

[

1{X=a}

∣

∣Z
]

.
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The mixed binomial model

The binomial model is also the starting point for more sophisticated models.
For example, the mixed binomial model which randomizes the default
probability in the standard binomial model, allowing for stronger dependence.

The economic intuition behind this randomizing of the default probability
p(Z ) is that Z should represent some common background variable affecting
all obligors in the portfolio.

The mixed binomial distribution works as follows: Let Z be a random
variable on R with density fZ (z) and let p(Z ) ∈ [0, 1] be a random variable
with distribution F (x) and mean p̄, that is

F (x) = P [p(Z ) ≤ x ] and E [p(Z )] =

∫ ∞

−∞

p(z)fZ (z)dz = p̄. (3)

Let X1, X2, . . .Xm be identically distributed random variables such that
Xi = 1 if obligor i defaults before time T and Xi = 0 otherwise.
Furthermore, conditional on Z , the random variables X1, X2, . . .Xm are
independent and each Xi have default probability p(Z ), that is
P [Xi = 1 |Z ] = p(Z )
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The mixed binomial model

Since P [Xi = 1 |Z ] = p(Z ) we get that E [Xi |Z ] = p(Z ), because
E [Xi |Z ] = 1 · P [Xi = 1 |Z ] + 0 · (1 − P [Xi = 1 |Z ]) = p(Z ). Furthermore,
note that E [Xi ] = p̄ and thus p̄ = E [p(Z )] = P [Xi = 1] since

P [Xi = 1] = E [Xi ] = E [E [Xi |Z ]] = E [p(Z )] =

∫ 1

0

p(z)fZ (z)dz = p̄.

where the last equality is due to (3).

One can show that

Var(Xi ) = p̄(1 − p̄) and Cov(Xi , Xj) = E
[

p(Z )2
]

− p̄2 = Var(p(Z )) (4)

Next, letting all losses be the same and constant given by, say ℓ, then the
total credit loss in the portfolio at time T , called L̃m, is

L̃m =

m
∑

i=1

ℓXi = ℓ

m
∑

i=1

Xi = ℓNm where Nm =

m
∑

i=1

Xi

thus, Nm is the number of defaults in the portfolio up to time T

Again, since P

[

L̃m = kℓ
]

= P [Nm = k], it is enough to study Nm.
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The mixed binomial model, cont.

However, since the random variables X1, X2, . . .Xm now only are
conditionally independent, given the outcome Z , we have

P [Nm = k |Z ] =

(

m

k

)

p(Z )k (1 − p(Z ))m−k

so since P [Nm = k] = E [P [Nm = k |Z ]] = E
[(

m
k

)

p(Z )k(1 − p(Z ))k
]

it
holds that

P [Nm = k ] =

∫ ∞

−∞

(

m

k

)

p(z)k (1 − p(z))m−k fZ (z)dz. (5)

Furthermore, since X1, X2, . . . Xm no longer are independent we have that

Var(Nm) = Var

(

m
∑

i=1

Xi

)

=
m
∑

i=1

Var(Xi ) +
m
∑

i=1

m
∑

j=1,j 6=i

Cov(Xi , Xj ) (6)

and by homogeneity in the model we thus get

Var(Nm) = mVar(Xi ) + m(m − 1)Cov(Xi , Xj). (7)
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The mixed binomial model, cont.

So inserting (4) in (7) we get that

Var(Nm) = mp̄(1 − p̄) + m(m − 1)
(

E
[

p(Z )2
]

− p̄2
)

. (8)

Next, it is of interest to study how our portfolio will behave when m → ∞,
that is when the number of obligors in the portfolio goes to infinity.

Recall that Var(aX ) = a2Var(X ) so this and (8) imply that

Var

(

Nm

m

)

=
Var(Nm)

m2
=

p̄(1 − p̄)

m
+

(m − 1)
(

E
[

p(Z )2
]

− p̄2
)

m
.

We therefore conclude that

Var

(

Nm

m

)

→ E
[

p(Z )2
]

− p̄2 as m → ∞ (9)

Note especially the case when p(Z ) is a constant, say p, so that p = p̄.
Then we are back in the standard binomial loss model and
E
[

p(Z )2
]

− p̄2 = p2 − p2 = 0 so Var
(

Nm

m

)

→ 0, i.e. the average number of
defaults in the portfolio converge to a constant (which is p) as the portfolio
size tend to infinity (this is the law of large numbers.)
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The mixed binomial model, cont.

So in the mixed binomial model, we see from (9) that the law of large
numbers do not hold, i.e. Var

(

Nm

m

)

does not converge to 0.

Consequently, the average number of defaults in the portfolio, i.e. Nm

m
, does

not converge to a constant as m → ∞.

This is due to the fact that the random variables X1, X2, . . . Xm, are not

independent. The dependence among the X1, X2, . . . Xm, is created by Z .

However, conditionally on Z , we have that the law of large numbers hold
(because if we condition on Z , then X1, X2, . . . Xm are i.i.d with default
probability p(Z )), that is

given a ”fixed” outcome of Z then
Nm

m
→ p(Z ) as m → ∞ (10)

and since a.s convergence implies convergence in distribution (10) implies
that for any x ∈ [0, 1] we have

P

[

Nm

m
≤ x

]

→ P [p(Z ) ≤ x ] when m → ∞. (11)
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The mixed binomial model, cont.

Note that (11) can also be verified intuitive from (10) by making the
following observation. From (10) we have that

P

[

Nm

m
≤ θ

∣

∣

∣

∣

Z

]

→

{

0 if p(Z ) > θ

1 if p(Z ) ≤ θ
as m → ∞

that is,

P

[

Nm

m
≤ θ

∣

∣

∣

∣

Z

]

→ 1{p(Z )≤θ} as → ∞. (12)

Next, recall that

P

[

Nm

m
≤ θ

]

= E

[

P

[

Nm

m
≤ θ

∣

∣

∣

∣

Z

]]

(13)

so (12) in (13) renders

P

[

Nm

m
≤ θ

]

→ E
[

1{p(Z )≤θ}

]

= P [p(Z ) ≤ θ] = F (θ) as m → ∞

where F (x) = P [p(Z ) ≤ x ], i.e. F (x) is the distribution function of the
random variable p(Z ).
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Large Portfolio Approximation (LPA)

Hence, from the above remarks we conclude the following important result:

Large Portfolio Approximation (LPA) for mixed binomial models

For large portfolios in a mixed binomial model, the distribution of the average
number of defaults in the portfolio converges to the distribution of the random
variable p(Z ) as m → ∞, that is for any x ∈ [0, 1] we have

P

[

Nm

m
≤ x

]

→ P [p(Z ) ≤ x ] when m → ∞. (14)

The distribution P [p(Z ) ≤ x ] is called the Large Portfolio Approximation (LPA) to
the distribution of Nm

m
.

The above result implies that if p(Z ) has heavy tails, then the random variable
Nm

m
will also have heavy tails, as m → ∞, which then implies a strong default

dependence in the credit portfolio.
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The mixed binomial model: the beta function

One example of a mixing binomial model is to let p(Z ) = Z where Z is a
beta distribution, Z ∼ Beta(a, b), which can generate heavy tails.

We say that a random variable Z has beta distribution, Z ∼ Beta(a, b), with
parameters a and b, if it’s density fZ (z) is given by

fZ (z) =
1

β(a, b)
za−1(1 − z)b−1 a, b > 0, 0 < z < 1 (15)

where β(a, b) denotes the beta function which satisfies the recursive relation

β(a + 1, b) =
a

a + b
β(a, b).

Also note that (15) implies that P [0 ≤ Z ≤ 1] = 1, that is Z ∈ [0, 1] with
probability one.

Furthermore, since p(Z ) = Z , the distribution of Nm

m
converges to the

distribution of the beta distribution, i.e

P

[

Nm

m
≤ x

]

→
1

β(a, b)

∫ x

0

za−1(1 − z)b−1dz as m → ∞
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The mixed binomial model: the beta function, cont.
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The mixed binomial model: the beta function, cont.

If Z has beta distribution with parameters a and b, one can show that

E [Z ] =
a

a + b
and Var(Z ) =

ab

(a + b)2(a + b + 1)
.

Consider a mixed binomial model where p(Z ) = Z has beta distribution with
parameters a and b. Then, by using (5) one can show that

P [Nm = k] =

(

m

k

)

β(a + k , b + m − k)

β(a, b)
. (16)

It is possible to create heavy tails in the distribution P [Nm = k] by
choosing the parameters a and b properly in (16). This will then imply more
realistic probabilities for extreme loss scenarios, compared with the standard
binomial loss distribution (see figure on next page).
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The mixed binomial model: the beta function, cont.
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Mixed binomial models: logit-normal distribution

Another possibility for mixing distribution p(Z ) is to let p(Z ) be a
logit-normal distribution. This means that

p(Z ) =
1

1 + exp (−(µ + σZ ))

where σ > 0 and Z ∼ N(0, 1), that is Z is a standard normal random
variable. Note that p(Z ) ∈ [0, 1].

Furthermore, if 0 < x < 1 then p−1(x) is well defined and given by

p−1(x) =
1

σ

(

ln

(

x

1 − x

)

− µ

)

. (17)

The mixing distribution F (x) = P [p(Z ) ≤ x ] = P
[

Z ≤ p−1(x)
]

for a
logit-normal distribution is then given by

F (x) = P
[

Z ≤ p−1(x)
]

= N(p−1(x)) for 0 < x < 1

where p−1(x) is given as in Equation (17) and N(x) is the distribution
function of a standard normal distribution.
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Correlations in mixed binomial models

Recall the definition of the correlation Corr (X , Y ) between two random
variables X and Y , given by

Corr (X , Y ) =
Cov (X , Y )

√

Var (X )
√

Var (Y )

where Cov(X , Y ) = E [XY ] − E [X ] E [Y ] and Var (X )) = E
[

X 2
]

− E [X ]2.

Furthermore, also recall that Corr (X , Y ) may sometimes be seen as a
measure of the ”dependence” between the two random variables X and Y .

Now, let us consider a mixed binomial model as presented previously.

We are interested in finding Corr (Xi , Xj) for two pairs i , j in the portfolio
(by the homogeneous-portfolio assumption this quantity is the same for any
pair i , j in the portfolio where i 6= j).

Below, we will therefore for notational convenience simply write ρX for the
correlation Corr (Xi , Xj).
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Correlations in mixed binomial models, cont.

Recall from previous slides that P [Xi = 1 |Z ] = p(Z ) where p(Z ) is the
mixing variable.

Furthermore, we also now that

Cov(Xi , Xj) = E
[

p(Z )2
]

− p̄2 and Var(Xi ) = p̄(1 − p̄) (18)

where p̄ = E [p(Z )].

Thus, the correlation ρX in a mixed binomial models is then given by

ρX =
E
[

p(Z )2
]

− p̄2

p̄(1 − p̄)
(19)

where p̄ = E [p(Z )] = P [Xi = 1] is the default probability for each obligor.

Hence, the correlation ρX in a mixed binomial is completely determined by
the fist two moments of the mixing variable p(Z ), that is E [p(Z )] and
E
[

p(Z )2
]

.

Exercise 1: Show that P [Xi = 1, Xj = 1] = E
[

p(Z )2
]

where i 6= j .

Exercise 2: Show that Var(Xi ) = E [p(Z )] (1 − E [p(Z )]).
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Value-at-Risk

Recall the definition of Value-at-Risk
Definition of Value-at-Risk

Given a loss L and a confidence level α ∈ (0, 1), then VaRα(L) is given by the
smallest number y such that the probability that the loss L exceeds y is no larger
than 1 − α, that is

VaRα(L) = inf {y ∈ R : P [L > y ] ≤ 1 − α}

= inf {y ∈ R : 1 − P [L ≤ y ] ≤ 1 − α}

= inf {y ∈ R : FL(y) ≥ α}

where FL(x) is the distribution of L.

Note that Value-at-Risk is defined for a fixed time horizon, so the above
definition should also come with a time period, e.g, if the loss L is over one
day, then we talk about a one-day VaRα(L).

In credit risk, one typically consider VaRα(L) for the loss over one year.

Note that if FL(x) is continuous, then VaRα(L) = F−1
L (α)
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Value-at-Risk for static credit portfolios

Consider the same type of homogeneous static credit portfolio models as
studied previously today, with m obligors and where each obligor can default
up to time T . Each obligor have identical credit loss ℓ at a default, where ℓ

is a constant.

The total credit loss in the portfolio at time T is then given by Lm = ℓNm

where Nm is the number of defaults in the portfolio up to time T .

Note that the individual loss ℓ is given by ℓ̃N where N is the notional of the
individual loan and ℓ̃ is the loss as a fraction of N (i.e ℓ̃ ∈ [0, 1])

By linearity of VaR (see in lecture notes by H&L) we can without loss of
generality assume that N = 1, so that ℓ̃ = ℓ, since

VaRα(cL) = cVaRα(L)
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Value-at-Risk for static credit portfolios, cont.

If p(Z ) is a mixing variable with distribution F (x) we know that

P

[

Nm

m
≤ x

]

→ F (x) as m → ∞

which implies that

P [Lm ≤ x ] = P

[

Nm

m
≤

x

ℓm

]

→ F
( x

ℓm

)

as m → ∞

Hence, if F (x) is continuous, and if m is ”large”, we have the following
approximation formula for VaRα(L)

VaRα(L) ≈ ℓ · m · F−1(α) (20)

where L denotes the loss Lm.
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Expected shortfall

The expected shortfall ESα(L) is defined as

ESα(L) = E [L |L ≥ VaRα(L)]

and one can show that

ESα(L) =
1

1 − α

∫ 1

α

VaRu(L)du.

Hence, for the same static credit portfolio as on the two previous slides, we have
the following approximation formula for ESα(L) (when m is large)

ESα(L) ≈
ℓ · m

1 − α

∫ 1

α

F−1(u)du

where L denotes the loss Lm and where we used (20). Here, F (x) is the
continuous distribution of the mixing variable p(Z ).
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Thank you for your attention!
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