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Content of Lecture

Discussion of a mixed binomial model inspired by the Merton model

Derive the large-portfolio approximation formula in this framework

Discussion of a mixed binomial model where the factor has discrete
distribution.
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The mixed binomial model inspired by the Merton Model

Consider a credit portfolio model, not necessary homogeneous, with m

obligors, and where each obligor can default up to fixed time point, say T .

Assume that each obligor i (think of a firm named i) follows the Merton
model, in the sense that obligor i-s assets Vt,i follows the dynamics

dVt,i = rVt,idt + σiVt,idBt,i (1)

where Bt,i is a stochastic process defined as

Bt,i =
√

ρWt,0 +
√

1 − ρWt,i . (2)

Here Wt,0, Wt,i , . . . , Wt,m are independent standard Brownian motions

It is then possible to show that Bt,i is also a standard Brownian motion.
Hence, due to (1) we then know that Vt,i is a GBM so by using Ito´s
lemma, we get

Vt,i = V0,ie
(r− 1

2 σ2
i )t+σi Bt,i
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The mixed binomial model inspired by the Merton Model

The intuition behind (1) and (2) is that the asset for each obligor i is driven
by a common process Wt,0 representing the economic environment, and an
individual process Wt,i unique for obligor i , where i = 1, 2, . . . , m.

This means that the asset for each obligor i , depend both on a
macroeconomic random process (common for all obligors) and an
idiosyncratic random process (i.e. unique for each obligor). This will create
a dependence among these obligors. To see this, recall that
Cov(Xi , Xj) = E [XiXj ] − E [Xi ] E [Xj ] so due to (2)

Cov (Bt,i , Bt,j) = E [Bt,iBt,j ] − E [Bt,i ]E [Bt,j ]

= E

[(√
ρWt,0 +

√

1 − ρWt,i

)(√
ρWt,0 +

√

1 − ρWt,j

)]

= E
[

ρW 2
t,0

]

+
√

ρ
√

1 − ρ (E [Wt,0Wt,i ] + E [Wt,0Wt,j ])

+ (1 − ρ) E [Wt,jWt,i ]

= ρE
[

W 2
t,0

]

= ρt

where the third equality is due to E [Wt,jWt,i ] = 0 when i 6= j .
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The mixed binomial model inspired by the Merton Model

Hence, Cov (Bt,i , Bt,j) = ρt which implies that there is a dependence of the
processes that drives the asset values Vt,i . To be more specific,

Corr (Bt,i , Bt,j) =
Cov (Bt,i , Bt,j)

√

Var (Bt,i )
√

Var (Bt,i )
=

ρt√
t
√

t
= ρ (3)

so Corr (Bt,i , Bt,j) = ρ which is the mutual dependence among the obligors
created by the macroeconomic latent variable Wt,0

Note that if ρ = 0, we have Corr (Bt,i , Bt,j) = 0 which makes the asset
values Vt,1, Vt,2, . . . , Vt,m independent (so the obligors are independent).

Next, let Di be the debt level for each obligor i and recall from the Merton
model that obligor i defaults if VT ,i ≤ Di , that is if

V0,ie
(r− 1

2 σ2
i )T+σiBT ,i < Di (4)

which, by using the definition of Bt,i is equivalent with the event

lnV0,i − ln Di + (r − 1

2
σ2

i )T + σi

(√
ρWT ,0 +

√

1 − ρWT ,i

)

< 0 (5)
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The mixed binomial model inspired by the Merton Model

Next, recall that for each i , Wi ,T ∼ N(0, T ), i.e Wi ,T is normally distributed
with zero mean and variance T . Hence, if Yi ∼ N(0, 1), Wi ,T has the same

distribution as
√

TYi for i = 0, 1, . . . , m where Y0, Y1, . . . , YM also are
independent. Furthermore, define Z as Y0, i.e Z = Y0. This in (5) yields

ln V0,i − lnDi + (r − 1

2
σ2

i )T + σi

(√
ρ
√

TZ +
√

1 − ρ
√

TYi

)

< 0 (6)

and dividing with σi

√
T renders

lnV0,i − ln Di + (r − 1
2σ2

i )T

σi

√
T

+
√

ρZ +
√

1 − ρYi < 0. (7)

We can rewrite the inequality (7) as

Yi <
−
(

Ci +
√

ρZ
)

√
1 − ρ

(8)

where Ci is a constant given by

Ci =
ln (V0,i/Di) + (r − 1

2σ2
i )T

σi

√
T

(9)
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The mixed binomial model inspired by the Merton Model

Hence, from the previous slides we conclude that

VT ,i < Di is equivalent with Yi <
−
(

Ci +
√

ρZ
)

√
1 − ρ

(10)

where Ci is a constant given by (9).

Next define Xi as

Xi =

{

1 if VT ,i < Di

0 if VT ,i > Di
(11)

Then (10) implies that

P [Xi = 1 |Z ] = P [VT ,i < Di |Z ] = P

[

Yi <
−
(

Ci +
√

ρZ
)

√
1 − ρ

∣

∣

∣

∣

∣

Z

]

= N

(

−
(

Ci +
√

ρZ
)

√
1 − ρ

) (12)

where N(x) is the distribution function of a standard normal distribution.

The last equality in (12) follows from the fact that Yi ∼ N(0, 1) and that Yi

is independent of Z in (10).
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The mixed binomial model inspired by the Merton Model

Next, assume that all obligors in the model are identical, so that V0,i = V0,
Di = D and thus Ci = C for i = 1, 2, . . . , m.

Then we have a homogeneous static credit portfolio, where we consider the
time period up to T .

Furthermore, Equation (12) implies that

P [Xi = 1 |Z ] = N

(

−
(

C +
√

ρZ
)

√
1 − ρ

)

(13)

where C is a constant given by (9) with V0,i = V0, Di = D, σi = σ and thus
Ci = C for all obligors i .

Let Z be the ”economic background variable” in our homogeneous portfolio
and define p(Z ) as

p(Z ) = N

(

−
(

C +
√

ρZ
)

√
1 − ρ

)

(14)

where N(x) is the distribution function of a standard normal distribution.
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The mixed binomial model inspired by the Merton Model

Since, p(Z ) ∈ [0, 1], we would like to use p(Z ) in a mixed binomial model.

To be more specific, let X1, X2, . . . Xm be identically distributed random
variables such that Xi = 1 if obligor i defaults before time T and Xi = 0
otherwise.

Furthermore, conditional on Z , the random variables X1, X2, . . .Xm are
independent and each Xi have default probability p(Z ), that is

P [Xi = 1 |Z ] = p(Z ) = N

(

−
(

C +
√

ρZ
)

√
1 − ρ

)

. (15)

We call this the mixed binomial model inspired by the Merton model or
sometimes simply a mixed binomial Merton model.
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The mixed binomial Merton model

Let L̃m =
∑m

i=1 ℓXi denote the total credit loss in our portfolio at time T .

We now want to study P

[

L̃m ≤ x
]

in our portfolio where Xi , conditional on

Z , have default probabilities p(Z ) given by (15).

Since the portfolio is homogeneous, all losses are the same and constant
given by, say ℓ, so

L̃m =
m
∑

i=1

ℓXi = ℓ
m
∑

i=1

Xi = ℓNm where Nm =
m
∑

i=1

Xi

thus, Nm is the number of defaults in the portfolio up to time T . Hence,

since P

[

L̃m = kℓ
]

= P [Nm = k], it is enough to study P [Nm ≤ n] where

n = 0, 1, 2 . . . , m instead of P

[

L̃m ≤ x
]

.

Next, note that P [Nm ≤ n] =
∑n

k=0 P [Nm = k] and

P [Nm = k] =

∫ ∞

−∞

(

m

k

)

p(z)k (1 − p(z))m−k fZ (z)dz (16)

where fZ (z) is the density of Z .
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The mixed binomial Merton model, cont.

In our case Z is a standard normal random variable so

P [Nm = k] =

∫ ∞

−∞

(

m

k

)

p(u)k (1 − p(u))m−k 1√
2π

e−
u2

2 du. (17)

Furthermore, p(u) is given by p(u) = N

(

−(C+
√

ρu)√
1−ρ

)

where N(x) is the

distribution function of a standard normal distribution.

Hence, P [Nm ≤ n] is given by

P [Nm ≤ n] =

n
∑

k=0

(

m

k

)
∫ ∞

−∞
N

(

−
(

C +
√

ρu
)

√
1 − ρ

)k

·
(

1 − N

(

−
(

C +
√

ρu
)

√
1 − ρ

))m−k

1√
2π

e−
u2

2 du

(18)
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Mixed binomial Merton: Large Portfolio Approx. (LPA)

So if we know C (later we show how to find C ) we can therefore find
P [Nm ≤ n] by numerically evaluate the expression in the RHS in (18).

However, there is another way to find a very convenient approximation of
P [Nm ≤ n].

To see this, recall from the last lecture that in any mixed binomial
distribution we have that

P

[

Nm

m
≤ θ

]

→ F (θ) as m → ∞ (19)

where F (x) is the distribution function of p(Z ), i.e. F (x) = P [p(Z ) ≤ x ]

But for any x we then have

P [Nm ≤ x ] = P

[

Nm

m
≤ x

m

]

≈ F
( x

m

)

if m is ”large”.

Hence, we can approximate P [Nm ≤ n] with F
(

n
m

)

instead of numerically
compute the quite involved expression in the RHS in (18).
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The mixed binomial Merton model and LPA, cont.

We therefore next want to find an explicit expression of F (θ) where

F (θ) = P [p(Z ) ≤ θ]. From (15) we know that p(Z ) = N

(

−(C+
√

ρZ)√
1−ρ

)

where Z is a standard normal random variable, i.e. Z ∼ N(0, 1).

Hence, F (θ) = P [p(Z ) ≤ θ] = P

[

N

(

−(C+
√

ρZ)√
1−ρ

)

≤ θ

]

so

P

[

N

(

−
(

C +
√

ρZ
)

√
1 − ρ

)

≤ θ

]

= P

[

−
(

C +
√

ρZ
)

√
1 − ρ

≤ N−1(θ)

]

= P

[

−Z ≤ 1√
ρ

(

√

1 − ρN−1(θ) + C
)

]

= N

(

1√
ρ

(

√

1 − ρN−1(θ) + C
)

)

where the last equality is due to
P [−Z ≤ x ] = P [Z ≥ −x] = 1− P [Z ≤ −x ] and 1 −N(−x) = N(x) for any
x , due to the symmetry of a standard normal random variable.
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The mixed binomial Merton model and LPA, cont.

Hence, F (θ) = N
(

1√
ρ

(√
1 − ρN−1(θ) + C

)

)

so what is left is to find C .

Since our model is inspired by the Merton model, we have that

Xi =

{

1 if VT < D

0 if VT > D
(20)

so P [Xi = 1] = P [VT < D]. However, from (7) and (10) we conclude that

VT < D ⇔ √
ρZ +

√

1 − ρYi ≤ −C (21)

where C is given by Equation (9) in the homogeneous case where V0,i = V0,
Di = D, σi = σ and consequently Ci = C for i = 1, 2, . . . , m.

Furthermore, since Z and Yi are standard normals then
√

ρZ +
√

1 − ρYi

will also be standard normal. Hence, P
[√

ρZ +
√

1 − ρYi ≤ −C
]

= N (−C )
and this observation together with (21) implies that

P [Xi = 1] = P [VT < D] = N (−C ) . (22)
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The mixed binomial Merton model and LPA, cont.

Recall that p̄ = E [p(Z )] =
∫ 1

0 p(z)fZ (z)dz so p̄ = P [Xi = 1] since
P [Xi = 1 |Z ] = p(Z ) and thus

P [Xi = 1] = E [P [Xi = 1 |Z ]] = E [p(Z )] = p̄

Hence, from (22) we have p̄ = N (−C ) so

C = −N−1 (p̄) (23)

which means that we can ignore C (and thus also ignore V0, D, σ and r , see
(9)) and instead directly work with the default probability p̄ = P [Xi = 1].
Hence, we estimate p̄ to 5%, say, which then implicitly defines the quantizes
V0, D, σ and r via (9) and (23).

Finally, going back to F (θ) = N
(

1√
ρ

(√
1 − ρN−1(θ) + C

)

)

and using (23)

we conclude that

F (θ) = N

(

1√
ρ

(

√

1 − ρN−1(θ) − N−1 (p̄)
)

)

(24)

where F (θ) = P [p(Z ) ≤ θ].
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The mixed binomial Merton model and LPA, cont.

Hence, if m is large enough, we can in a mixed binomial model inspired by
the Merton model, do the following approximation of the portfolio loss
probability P [Nm ≤ n] = P

[

Nm

m
≤ n

m

]

≈ F
(

n
m

)

, that is

P [Nm ≤ n] ≈ N

(

1√
ρ

(

√

1 − ρN−1
( n

m

)

− N−1 (p̄)
)

)

. (25)

where p̄ = P [Xi = 1] is the individual default probability for each obligor.

The approximation (24) or equivalently (25), is sometimes denoted the LPA

in a static Merton framework, and was first introduced by Vasicek 1991, at
KMV, in the paper ”Limiting loan loss probability distribution”.

The LPA in a Merton framework and its offsprings (i.e. variants) is today
widely used in the industry (Moody’s-KMV, CreditMetrics etc. etc.) for risk
management of large credit/loan portfolios, especially for computing
regulatory capital in Basel II and Basel III (Basel III is to be implemented
before end of 2013).
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The mixed binomial Merton model: The role of ρ

Recall from (3), that ρ was the correlation parameter describing the
dependence between the Brownian motions Bt,i that drives each obligor i ’s
asset price, i.e. Cov(Bt,i , Bt,j) = ρt so that Corr(Bt,i , Bt,j) = ρ.

Since Xi = 1{VT ,i≤D} we know that Xi and Xj are dependent because
Cov(Bt,i , Bt,j) = ρt where ρ 6= 0. Furthermore, if ρ 6= 0 it generally holds
that Cov(Xi , Xj) 6= 0 since

Cov(Xi , Xj) = E
[

1{VT ,i≤D}1{VT ,j≤D}
]

− E
[

1{VT ,i≤D}
]

E
[

1{VT ,j≤D}
]

= P [VT ,i ≤ D, VT ,j ≤ D] − P [VT ,i ≤ D] P [VT ,j ≤ D]

= P [VT ,i ≤ D, VT ,j ≤ D] − p̄2

(26)

and P [VT ,i ≤ D, VT ,j ≤ D] 6= p̄2 since Cov(Bt,i , Bt,j) = ρt with ρ 6= 0
implies (see also Equation (21) and (22))

P [VT ,i ≤ D, VT ,j ≤ D] = P

[

BT ,i < −
√

TC , BT ,j < −
√

TC
]

6=P

[

BT ,i < −
√

TC
]

P

[

BT ,j < −
√

TC
]

= p̄2.

Hence, Cov(Xi , Xj) 6= 0 when ρ 6= 0.

Alexander Herbertsson (Univ. of Gothenburg) Financial Risk: Credit Risk, Lecture 2 November 15, 2012 17 / 28



The mixed binomial Merton model: The role of ρ, cont.

Next, assume that ρ = 0 so that Cov(Bt,i , Bt,j) = 0. Furthermore, by (2) we
have that Bt,i = Wt,i when ρ = 0 since

Bt,i =
√

0Wt,0 +
√

1 − 0Wt,i = Wt,i (27)

where Wt,0, Wt,i , . . . , Wt,m are independent standard Brownian motions.

Equation (27) and the independence among Wt,0, Wt,i , . . . , Wt,m then
imply

P [VT ,i ≤ D, VT ,j ≤ D] = P

[

BT ,i < −
√

TC , BT ,j < −
√

TC
]

= P

[

WT ,i < −
√

TC , WT ,j < −
√

TC
]

= P

[

WT ,i < −
√

TC
]

P

[

WT ,j < −
√

TC
]

= P [VT ,i ≤ D] P [VT ,j ≤ D] = p̄2

and plugging this into (26) yields that Cov(Xi , Xj) = 0.

Alexander Herbertsson (Univ. of Gothenburg) Financial Risk: Credit Risk, Lecture 2 November 15, 2012 18 / 28



The mixed binomial Merton model: The role of ρ, cont.

From the above studies we conclude that

Cov(Xi , Xj) = 0 if ρ = 0 (28)

and
Cov(Xi , Xj ) 6= 0 if ρ 6= 0. (29)

We therefore conclude that ρ is a measure of default dependence among
the zero-one variables X1, X2, . . . , Xm in the mixed binomial Merton model.
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The mixed Merton binomial model and LPA
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The mixed Merton binomial model and LPA, cont.

Given the limiting distribution F (θ)

F (θ) = N

(

1√
ρ

(

√

1 − ρN−1(θ) − N−1 (p̄)
)

)

(30)

we can also find the density fLPA(θ) of F (θ), that is fLPA(θ) = dF (θ)
dθ

.

It is possible to show that

fLPA(θ) =

√

1 − ρ

ρ
exp

(

1

2
(N−1(θ))2 − 1

2ρ

(

N−1 (p̄) −
√

1 − ρN−1(θ)
)2
)

(31)

This density is just an approximation, and fails for small number of the loss
fraction.
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The mixed Merton binomial model and LPA, cont.
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The mixed Merton binomial model and LPA, cont.
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The mixed Merton binomial model and LPA, cont.
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VaR in the mixed binomial Merton model

Consider a static credit portfolio with m obligors in a mixed binomial model
inspired by the Merton framework where

the individual one-year default probability is p̄

the individual loss is ℓ

the default correlation is ρ

By assuming the LPA setting we can now state the following result for the
one-year credit Value-at-Risk VaRα(L) with confidence level 1 − α.

VaR in the mixed binomial Merton model using the LPA setting

With notation and assumptions as above, the one-year VaRα(L) is given by

VaRα(L) = ℓ · m · N
(√

ρN−1(α) + N−1(p̄)√
1 − ρ

)

. (32)

Useful exercise: Derive the formula (32).

Note that variants of the formula (32) is extensively used for computing
regulatory capital in Basel II and Basel III
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Discrete factors in mixed binomial models

In all our previous examples the random variable Z (modelling the common
background factor) have been continuous and the mixing function
p(x) ∈ [0, 1] were chosen to be continuous too.

However, we can also model Z to be a discrete random variable as follows.
Let Z be a random variable such that

Z ∈ {z1, z2, . . . , zN} where P [Z = zn] = qn and
N
∑

n=1

qn = 1. (33)

where it obviously must hold that qn ∈ [0, 1] for each n = 1, 2, . . . , N .

Furthermore, we model the mixing function p(x) ∈ [0, 1] as

p(Z ) ∈ {p1, p2, . . . , pN} where p(zn) = pn ∈ [0, 1] for each n (34)

where we without loss of generality may assume that p1 < p2 < . . . < pN .
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Discrete factors in mixed binomial models, cont.

Furthermore, note that

P [Z = zn] = P [p(Z ) = pn] = qn for n = 1, 2, . . . , N . (35)

Recall that p̄ = P [Xi = 1] = E [p(Z )] so in the model described by (33) and
(35) we have

p̄ =
N
∑

n=1

pnqn. (36)

Given (33) and (35) the distribution function F (x) = P [p(Z ) ≤ x] is then
for any x ∈ [0, 1] expressed as

F (x) =
∑

n:pn≤x

qn . (37)

Due to the LPA approach we then know that for any x ∈ [0, 1] it holds that

P

[

Nm

m
≤ x

]

→
∑

n:pn≤x

qn as m → ∞. (38)

Alexander Herbertsson (Univ. of Gothenburg) Financial Risk: Credit Risk, Lecture 2 November 15, 2012 27 / 28



Thank you for your attention!
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