
Financial Risk 

Lecture 2 



Returns 

• We may be interested in what we may lose from time 𝑡1 to time 𝑡2 
 

• Letting 𝑝𝑡1and 𝑝𝑡2 denote the value of the portfolio at time 𝑡1 and 𝑡2, respectively,  
we define the absolute return 

 

𝑟 𝑡2 = 𝑝𝑡2 − 𝑝𝑡1  
 

• The relative return  
 

𝑟 𝑡2 =
𝑝𝑡2 − 𝑝𝑡1

𝑝𝑡1
 

 
• And the log-return 

 

𝑟𝑡2 = ln
𝑝𝑡2
𝑝𝑡1

 

 



Loss variable 

• So if we are interested in what we may lose in 
dollars, euros or SEK we define the loss variable 𝐿 
as the negative absolute return 
 

• If we are interested in what we may lose in terms 
of a percentage of the portfolio value we define 
the loss variable 𝐿 as the negative relative return 
 

• Note that (Taylor expansion) log-returns and 
relative returns will be close for small relative 
returns 
 



Value at Risk (VaR) 

• One of the most common notions in financial risk management is 
that of Value at Risk (VaR) 
 

• VaR may be used to determine the amount of regulatory capital to 
set aside for different types of risks 
 

• Letting 𝐿 be loss variable for our portfolio we may define VaR as 
 

𝑉𝑎𝑅𝑝 = 𝑖𝑛𝑓 𝑥: 𝑃 𝐿 > 𝑥 ≤ 1 − 𝑝  

 
• So VaR gives us the smallest amount (or percentage) we may lose 

with a certain probability 



Expected Shortfall (ES) 

• Given that the VaR is exceeded, one may 
wonder how bad this can be 

 

• We may quantify this in terms of the expected 
shortfall 

 

𝐸𝑆𝑝 = 𝐸 𝐿|𝐿 > 𝑉𝑎𝑅𝑝  

 

 



Extremal events 

• Typically we are interested in hedging big losses 
 

• Therefore, we are interested in models of 
extremal events, i.e., models of big losses 
 

• It turns out that ”standard” distributions, such as 
the normal distribution, are not sufficient 
 

• Furthermore, the distribution of 𝐿 is typically 
unknown… 



Extreme Value Theory 

• We know that we, eventhough the distribution of 
a (i.i.d.) sample may be unknown, may 
approximate the distribution of the sample mean 
by the normal distribution if the sample size is 
sufficiently large 

 
• Is there a ”similar” scheme for the maximum or 

minimum of a (i.i.d.) sample of, say, log-returns 
𝑟1, … , 𝑟𝑛 ? 

 
𝑀𝑛 = 𝑚𝑎𝑥 𝑟1, … , 𝑟𝑛  or 𝑚𝑛 = 𝑚𝑖𝑛 𝑟1, … , 𝑟𝑛  

 



Extreme Values 

• If we assume that the log returns are serially 
independent and have distribution function 
 

𝐹 𝑥 = 𝑃 𝑟𝑡 ≤ 𝑥  
 
it holds that 
 

𝑃 𝑀𝑛 ≤ 𝑥 = 𝑃 𝑟1 ≤ 𝑥,… , 𝑟𝑛 ≤ 𝑥 = 𝑃 𝑟𝑖 ≤ 𝑥

𝑛

𝑖=1

= 𝐹 𝑥 𝑛 



Degeneration 

• But what happens if we let the number of 
observations increase, i.e. let 𝑛 → ∞? 

 

• Then 𝐹 𝑥 𝑛 → 0 or 𝐹 𝑥 𝑛 → 1 depending 
on if 𝑥 < 𝑢 or 𝑥 ≥ 𝑢 where 𝑢 is the upper end 
point of 𝑟𝑡 (typically 𝑢 = ∞ for log returns) 

 

• So we need something more to get a non-
trivial limit… 



Appropriate sequences 

• We need sequences 𝛼𝑛 , 𝛽𝑛  such that the 
distribution of 
 

𝑀𝑛∗ =
𝑀𝑛 − 𝛽𝑛

𝛼𝑛
 

 
converges to a non-trivial limit 
 
• We sometimes refer to 𝛼𝑛  and 𝛽𝑛  and the 

scaling and location sequences, respectively 
 
 



Limiting distributions 

• It turns out that if the limit exists its distribution function will be 
(Generalized extreme value distribution, GEV) 
 

𝐹∗ 𝑥 = 𝑒𝑥𝑝 − 1 + 𝜉𝑥 −1/𝜉  

 
for 𝑥 < −1/𝜉 if 𝜉 < 0 and for 𝑥 > −1/𝜉 if 𝜉 > 0 
 
• The special case 𝜉 = 0 gives   
 

𝐹∗ 𝑥 = 𝑒𝑥𝑝 −𝑒𝑥𝑝 −𝑥  
 
for −∞ < 𝑥 < ∞  

 



Three types 

• Type I, 𝜉 = 0, the Gumbel distribution 
 

𝐹∗ 𝑥 = 𝑒𝑥𝑝 −𝑒𝑥𝑝 −𝑥 ,−∞ < 𝑥 < ∞ 
 
• Type II, 𝜉 > 0, the Fréchet distribution 

 

𝐹∗ 𝑥 =  
𝑒𝑥𝑝 − 1 + 𝜉𝑥 −1/𝜉 , 𝑥 > −1/𝜉

0                              , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 
• Type III, 𝜉 < 0, the Weibull distribution 

 

𝐹∗ 𝑥 =  
𝑒𝑥𝑝 − 1 + 𝜉𝑥 −1/𝜉 , 𝑥 < −1/𝜉

1                                 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 
  
 



In practice 

• In real world problems we typically do not have to worry about 
what  
 

𝐹 𝑥 = 𝑃 𝑟𝑡 ≤ 𝑥  
 
looks like in order to fit extreme value distributions 
 
• What we do have to worry about however is that returns typically 

not are independent or stationary  
 

• In lecture 1 we proposed a way of imposing stationarity on the data 
at hand and a scheme for estimating and predicting VaR 
dynamically 



Estimation for GEV 

• For a given sample there is just one maximum or minimum  
 

• Of course we cannot estimate parameters using just one 
observation 
 

• One way of circumventing this problem is to divide the sample into 
non-overlapping blocks and then use the maximum from each block 
to estimate parameters 
 

𝑟1, … , 𝑟𝑛|𝑟𝑛+1, … , 𝑟2𝑛|⋯ |𝑟 𝑘−1 𝑛+1, … , 𝑟𝑘𝑛  

 
• It should be noted that 𝑟𝑡 should be replaced by 𝑧𝑡 when using the 

dynamic scheme proposed in lecture 1.  
 



Estimation 

• The method described above is referred to as 
the ”Block maxima method”. 

 

• For sufficiently large blocks the block maxima 
should follow the GEV distribution  

 

• The block maxima may be considered a 
sample from the GEV distribution 



Estimation 

• If we denote the block maxima 𝑀1,𝑛, … ,𝑀𝑘,𝑛 , the pdf needed for the ML 
estimation is (exercise) 

 

𝑓 𝑀𝑖,𝑛 =
1

𝛼𝑛
1 +

𝜉𝑛 𝑀𝑖,𝑛 − 𝛽𝑛
𝛼𝑛

−
1
𝜉𝑛
+1

𝑒𝑥𝑝 − 1 +
𝜉𝑛 𝑀𝑖,𝑛 − 𝛽𝑛

𝛼𝑛

−1/𝜉𝑛

 

 

if  𝜉𝑛 ≠ 0 where it has to hold that 1 +
𝜉𝑛 𝑀𝑖,𝑛−𝛽𝑛

𝛼𝑛
> 0, and 

 

𝑓 𝑀𝑖,𝑛 =
1

𝛼𝑛
𝑒𝑥𝑝 −

𝑀𝑖,𝑛 − 𝛽𝑛
𝛼𝑛

− 𝑒𝑥𝑝 −
𝑀𝑖,𝑛 − 𝛽𝑛

𝛼𝑛
 

 
if  𝜉𝑛 = 0  
 

 

 

 
 



Estimation 

• The likelihood function is then 
 

𝐿 𝛼𝑛, 𝛽𝑛, 𝜉𝑛|𝑀1,𝑛, … ,𝑀𝑘,𝑛 = 𝑓 𝑀𝑖,𝑛

𝑘

𝑖=1

 

 
• The estimates will be unbiased and asymptotically normal 

 
• Estimations may also be made using regression or non-

parametric techniques, see Tsay 3rd ed p.347-348 
 

• On may also use ”gevfit” in matlab or some EV-package in R 



Example 

• Fitting the Gumbel distribution to the 
Decile1,2,9,10 data (from Tsay) using 21-day 
blocks and gevfit in Matlab gives 

 

  

Data Scale 𝛼𝑛  Location 𝛽𝑛 

Decile1 0.0807 0.1291 

Decile2 0.0633 0.0983 

Decile9 0.0265 0.0787 

Decile10 0.0286 0.0728 



Checking model fit 

• One can define residuals as (hats for parameter estimates are left out in what 
follows) 
 

𝑒𝑖 = 1 +
𝜉𝑛 𝑀𝑖,𝑛 − 𝛽𝑛

𝛼𝑛

−1/𝜉𝑛

 

 
if 𝜉𝑛 ≠ 0 and  
 

 𝑒𝑖 = 𝑒𝑥𝑝 −
𝑀𝑖,𝑛−𝛽𝑛

𝛼𝑛
 

 
if 𝜉𝑛 = 0  
 
• Residuals should follow an exponential distribution if the model is correctly 

specified 



PP-plots (Matlab ”probplot” ML decile) 



Alternative Simple Method, Gumbel  

• If a random variable has the Gumbel distribution function  
 

𝑒𝑥𝑝 −𝑒𝑥𝑝 𝑥 − 𝛽𝑛 𝛼𝑛  

 
it can be shown that the expected value is 𝛽𝑛 + 𝛼𝑛𝛾, where 𝛾 ≈ 0.5772 (Euler’s 
constant), and that the variance is  𝜋𝛼𝑛

2/6 
 
• This means that we may estimate 𝛼𝑛 and 𝛽𝑛 using 

 

𝛼 𝑛 =
6

𝜋
𝑆𝑀𝑛

     and   𝛽 𝑛 = 𝑀 𝑛 − 𝛾𝛼 𝑛 

 

where 𝑀 𝑛 and 𝑆𝑀𝑛
 are the mean and standard deviation of our observed block 

maxima.  
 
   



Creating QQ-plots 

• If we want QQ-plots to check the fit of a GEV we may 
use our ordered (increasing values) observations 𝑀 𝑖 ,𝑛 
for 𝑖 = 1,… ,𝑚 and the quantiles  

 

𝑀∗
𝑖,𝑛 =

𝛽𝑛 −
𝛼𝑛
𝜉𝑛

1 − −ln
𝑖

𝑚 + 1

−𝜉𝑛

𝛽𝑛 − 𝛼𝑛ln −ln
𝑖

𝑚 + 1

 

• The pairs 𝑀∗
𝑖,𝑛, 𝑀 𝑖 ,𝑛  should form a straight line 



QQ-plots (Excel) for Gumbel fit to 
standardized negated FB log-returns 

• 21-day 

 

 

 

 

• 30-day 



Using Block-Maxima for VaR 

• In VaR we are interested in quantiles 
 

• Using GEV distributions and assuming that we have 
negated returns so that a high return is a big loss we let 
𝑞 be the (small) probability of a great loss and write 
 

1 − 𝑞 =

𝑒𝑥𝑝 − 1 +
𝜉𝑛 𝑀∗

𝑛 − 𝛽𝑛
𝛼𝑛

−1/𝜉𝑛

𝑒𝑥𝑝 −𝑒𝑥𝑝 −
𝑀∗

𝑛 − 𝛽𝑛
𝛼𝑛

 



Using Block-Maxima for VaR 

• Solving for the quantile 𝑀∗
𝑛 we get 

 

𝑀∗
𝑛 =  

𝛽𝑛 −
𝛼𝑛

𝜉𝑛
1 − −ln 1 − 𝑞 −𝜉𝑛

𝛽𝑛 − 𝛼𝑛ln −ln 1 − 𝑞
  

 

• Now this is the quantile for the number (𝑛) of 
observations in each the block so we have to 
transform it to use it for one-day VaR 



Using Block-Maxima for VaR 

• Under the assumption of independent returns we may use that 
 

1 − 𝑞 = 𝑃 𝑀𝑖,𝑛 ≤ 𝑀∗
𝑛

= 𝑃 𝑟𝑡 ≤ 𝑀∗
𝑛

𝑛 

 
• So if we want 𝑃 𝑟𝑡 ≤ 𝑀∗

𝑛 = 1 − 𝑞 we get 
 

𝑉𝑎𝑅1−𝑞 =  
𝛽𝑛 −

𝛼𝑛
𝜉𝑛

1 − −𝑛ln 1 − 𝑞 −𝜉𝑛

𝛽𝑛 − 𝛼𝑛ln −𝑛ln 1 − 𝑞
 

 
• It should be noted that 𝑟𝑡 should be replaced by 𝑧𝑡 using the 

dynamic scheme proposed in lecture 1.  



Using Block-Maxima for VaR 

• Using the decile data and the Gumbel model for 
block maxima of negated returns (without 
standardization which yields a constant VaR) fit 
with ML using Matlab (gevfit) we get 
 
 
 
 
 

  
 

 

Data 95% VaR 99% VaR 

Decile1 0.1231 0.2546 

Decile2 0.0936 0.1968 

Decile9 0.0767 0.1199 

Decile10 0.0707 0.1173 



Gumbel VaR for FB in Excel 

Using the simple scheme and Gumbel for the 21-day block maxima also 
underestimates VaR as there are approximately 6% exceedances (not seen 
from the graph but easy to get in Excel). As we shall see in lecture 4, this 
underestimation can be taken care of by taking into account dependencies in 
the data. 



Return Level 

• We may be interested in what levels losses are 
expected to exceed within in a certain time frame 

 

• We refer to this as the return level 𝐿𝑛,𝑘 where 𝑘 
denotes the number of periods of length 𝑛 and  

 

𝑃 𝑀𝑖,𝑛 > 𝐿𝑛,𝑘 =
1

𝑘
  



Return Level 

• If 𝑛 is large enough so that the distribution of 
maxima is GEV we have that 

 

 𝐿𝑛,𝑘 =  
𝛽𝑛 −

𝛼𝑛

𝜉𝑛
1 − −ln 1 −

1

𝑘

−𝜉𝑛

𝛽𝑛 − 𝛼𝑛ln −ln 1 −
1

𝑘

 



Return Level 



Summary and about tech proj 1 

• We have seen that it is possible to compute and forecast Gumbel VaR using simple methods 

 

• Next time we will look into fitting GPD distributions to data 

 

• What has been covered today will be included in technical project 1 and in particular one 
must know how to create a dynamic Gumbel VaR series under i.i.d. assumption starting from 
an arbitrary set of stock prices in order to get a grade higher than 3/G 

 

• Hence it is recommended that you download some data set, preferrably two years of prices, 
from e.g. yahoo finance and starting playing around with it.  

 

• Note that file downloaded from yahoo finance are csv-files that you may transfer to xlsx by 
using ”text to columns” under ”data” in Excel 

 

• To get started check out the xlsx-file available on facebook and at the course web page 


