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Extremal Index 

• So far we have assumed that we have i.i.d. data which is not a correct assumption 
 

• Typically big losses come in (volatility) clusters 
 

• It can be shown for a stationary sequence 𝑟𝑡  satisfying a condition of sufficiently 
fast decay of long range dependence of exceedance clusters and an i.i.d. series 𝑟 𝑡  
with the same marginal distribution as 𝑟𝑡  that, if we have convergence 
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then  𝐹∗ 𝑥  is GEV and can be expressed as a power 0 < 𝜃 ≤ 1 of the GEV towards 
which the maximum of the i.i.d. sequence converges 
 
• We call 𝜃 the extremal index and it may be interpreted as the reciprocal of the 

mean cluster length 



Extremal Index (GEV) 

• Since  
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we get (exercise) 

𝐹∗ 𝑥 = 𝐹 ∗ 𝑥
𝜃
= 𝑒𝑥𝑝 − 1 + 𝜉∗

𝑥 − 𝛽∗
𝛼∗

−1/𝜉∗

 

 

where 𝜉∗ = 𝜉, 𝛼∗ = 𝛼𝜃𝜉  and 𝛽∗ = 𝛽 − 𝛼 1 − 𝜃𝜉 /𝜉 
 



In practice 

• We will use some declustering techniques to estimate the extremal 
index and use cluster maxima (byproduct) for PoT 
 

• Block method; divide observations into blocks of fixed length. All 
values in a block that exceed the threshold 𝑢 is a cluster 
 

• Block-runs method; The first cluster starts at the first exceedance of 
𝑢 and contains all exceedances within a fixed length 𝑟 thereafter, 
and so on 
 

• Runs method; The first cluster starts with the first exceedance of 𝑢 
and stops as soon as there is a value below 𝑢, the next starts with 
the next exceedance of 𝑢 an so forth 



In practice 

• We get an estimate of the extremal index as 
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• We may use the cluster maxima for PoT and GPD for 

the stationary series 
 

• The block sizes and thresholds used for declustering 
are not necessarily related to the ones used to give the 
best GEV and GP fits. 



GEV VaR for a stationary series 

• So we may estimate scale, location and shape 
for the GEV as if data were i.i.d. (i.e. using 
block maxima) and then adjust parameter 
estimates using our estimate of the extremal 
index 
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Decile 9 

• Using block declustering with block size 10 and 𝑢 = 0.08 
yields 𝜃 = 0.77 
 

• As a check that the declustering is reasonable one may 
check the fit of the GPD to the cluster maxima (minus 
threshold) 
 

• Using 𝜃 = 0.77 in the above (𝜉𝑛 = 0) VaR formula gives the 
95% and 99% VaR for the decile9 data; 0.0838 and 0.1270 
 

• We note that these numbers higher than the ones given 
without using the extremal index. 



FB-data in Excel 

• As an example we use the block declustering method 
with 30-day blocks gives the extremal index 0.542 as 
there are 13 clusters and 24 exceedances of the 
threshold 1.5 (there are approximately 5% 
standardized negated returns above 1.5) 
 

• Using 30-day block maxima and plugging in the 
estimated extremal index gave a 95% quantile for the 
standardized negated returns of 1.743  
 

• The choice of 30-day block declustering was made after 
some tweaking… 



FB-data in Excel 

There are 18 violations or exceedances of VaR in 480 observations giving a 
percentage of approximately 4 which is a slight over-estimation of the VaR 



PoT VaR for stationary series 

• PoT for stationary series is done by replacing threshold exceedances 
(minus threshold) by cluster maxima (minus threshold) 
 

• Also the number of exceedances 𝑁 𝜂  should be replaced by the number 
of clusters in the formulas for quantiles and VaR 

 
• Letting 𝑁𝑐 denote the number of clusters, we have (for the stationary 

series) 
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PoT VaR for stationary series 

• Of course different declustering methods may 
yield different results and some tweaking may be 
needed 

 

• Again, it should be noted that thresholds used for 
declustering do not have to be equal to the ones 
used when fitting GPD and that block sizes used 
for declustering do not have to be equal to the 
block sizes used in the block maxima method 

 



Taking one step further 

• So far we know how to use extremes for stationary data 
 

• We know that log return data is typically not stationary, i.e. 
distribution is not constant over time, and trying to estimate 
distributions from non stationary data is not a good idea since non 
stationarity implies that distribution parameters change over time… 
 

• To remedy this we may first ”devolatize” data using some mean and 
volatility series 𝜇 𝑡  and 𝜎 𝑡   

 

𝑧𝑡 =
−𝑟𝑡 − 𝜇 𝑡

𝜎 𝑡
 



Taking one step further 

• Hopefully the series 𝑧𝑡  appears stationary and we fit some (maybe EVT) 
distribution 𝐹 to this series  
 

• We will then get  
 

𝑉𝑎𝑅𝑝,𝑡 = 𝜇 𝑡 + 𝜎 𝑡𝐹
−1 𝑝  

 

where  𝐹−1 𝑝  denotes the 𝑝-quantile of 𝐹, i.e. the 𝑉𝑎𝑅𝑝 for the stationary 
series 𝑧𝑡   
 
• This is what we probably would use in real life to get a VaR-series that 

tracks returns and volatility clusters, instead of a constant VaR which 
would typically make our bank lose lots of money during volatility clusters 
and setting aside unneccesary regulatory capital in tranquile periods  



Imposing stationarity 

• There are several ways of ”creating” the 
normalizing mean and volatility series 𝜇 𝑡  
and 𝜎 𝑡   

 

• One simple, but often effective, way is to us 
windows of observations (of returns), for 
which one computes means and standard 
deviations 



Imposing stationarity 

• So if we have a series of returns 𝑟𝑡  we get the mean and volatility series 𝜇 𝑡  and 
𝜎 𝑡  from 
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• For daily returns the window length, 𝜏, is typically chosen to be 21 days, which 

amounts to an approximate trading month 
 

• However adjustments of the window length may improve perfomance  
  



Using EVT distributions 

• Using the estimation schemes covered in earlier 
lectures we may use block-maxima, PoT and extremal 
index methods to estimate quantiles 𝐹−1 𝑝  to be 
used for the VaR-series 
 

• It will likely be the case that different methods perform 
differently on different data sets 
 

• For a ”nice” data set an i.i.d. normal assumption for the 
standardized negated returns may suffice but in many 
cases one will need GEV or GP distributions and the 
extremal index and declustering.  



Are the parameters statistically 
significant? 

• To check this we may use profile likelihood 
 

• The idea is to use that twice the difference between the log 
likelihood function for all parameters and the log likelihood 
function for all parameters but one follows a chi-squared 
distribution with one degree of freedom 
 

• The 95% quantile for the chi-squared with one degree of 
freedom is 3.84 which means that we find a 95% CI for 𝜃 
say by finding the values of 𝜃 for which the difference of 
the log likelihood function with all ML estimates plugged in 
and the log likelihood where we all the ML estimates 
except the one for 𝜃 is 3.84/2=1.92 



ML inference: Profile likelihood confidence intervals 
(Plots from Coles ) 

Conf. interval Conf. interval 

Profile likelihood confidence intervals for the shape parameter   
and return level in the PoT (GPD) model.  



A real life example 

• Let’s assume that we are working in a bank and want to find a reasonable model 
for 95% VaR of the Nikkei 225 index 
 

• We will focus on fitting models to historical data in order to find a model to use for 
forescasts  
 

• We are free to use pretty much any software we want but have to appreciate the 
fact that using Excel will probably not give us as much flexibility as using some 
more advanced package in which we can do ML-estimates 
 

• Below we have used SAS for some plots and Matlab for the main analysis 
 

• To fit GEV and GP we use the commands ”gevfit” and ”gpfit” which give ML-
estimates and confidence intervals for parameters at hand 
 

• QQ-plots are made using what has been covered on the slides together with the 
command ”polyfit” to give reference lines 



Nikkei 225 



Nikkei 225 



Nikkei 225 



Nikkei 225 



PoT for N225 

Here we used 95%-quantile as threshold and no declustering 

 



BM for N225 



95% VaR 

Model Violations 

PoT 5.0% 

Normal 5.9% 

BM 6.5% 

BM w EI 5.0% 

The extremal index was estimated using the runs declustering  



Conclusion 

• There is no universal solution 
 

• In calm periods normal VaR may work well 
 

• In more volatile periods EVT methods probably yield better results 
 

• Tweaking (which will be frustrating and time-consuming) is needed 
to find good models 
 

• In practice/real life one would probably do daily or weekly re-
estimate parameters for distributions and VaR used for forecasting 

 
• There are more ways to evaluate models than the ones presented 

here 
 

 



Summary and about tech proj 1 

• What has been covered today will be included in technical project 1 and in particular one 
must know how to do what has been covered today, i.e. using the extremal index to capture 
dependencies in data when creating VaR series, starting from an arbitrary set of stock prices 
in order to get a grade higher than 4/VG 

 

• Hence it is recommended that you download some data set, preferrably two years of prices, 
from e.g. yahoo finance and starting playing around with it.  

 

• Note that file downloaded from yahoo finance are csv-files that you may transfer to xlsx by 
using ”text to columns” under ”data” in Excel 

 

• To get started check out the xlsx-file available on facebook and at the course web page 


