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Content of lecture

@ Short recapitulation of the mixed binomial model

@ Discussion of the loss distribution in the mixed binomial model and
how to use the LPA theory to find approximation for the loss for large
portfolios

(]

Recapitulation of Value-at-Risk and Expected shortfall and its use in
the mixed binomial loss model

[

Study of a mixed binomial loss model with a beta distribution

[

Study of a mixed binomial loss model with a logit-normal distribution

@ Discussion of correlations etc
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Recap of the mixed binomial model

Consider a homogeneous credit portfolio model with m obligors, and where we
each obligor can default up to fixed time point, say T. Each obligor have
identical credit loss at a default, say £. Here £ is a constant.

@ Let X; be a random variable such that

X — 1 if obligor /i defaults before time T (1)
"7 1 0 otherwise, i.e. if obligor i survives up to time T

@ Let Z be a random variable, discrete or continuous, that represents some
common background variable affecting all obligors in the portfolio.

@ Since we consider a homogeneous credit portfolio, X1, Xa, ... X, are
identically distributed. Furthermore, we assume the following:

Conditional on Z, the random variables Xi, X5, ... X, are independent and
each X; have default probability p(Z) € [0, 1], that is

P[X =1]2] = p(2) @)
so that P[X; = 1] = p for each obligor i where p is given by
p=EX]=E[E[X|Z]] =E[p(2)] (3)
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Recap of the mixed binomial model, cont.

@ Note that (2) and (3) holds regardless if Z is a discrete or continuous
random variable.

@ If Z is a continuous random variable on R with density fz(z) then

P=2p@] - [ () (@

— 00

@ Recall that we are interested in finding the loss distribution in our
homogeneous credit portfolio as specified above

@ The total credit loss in the portfolio at time T, called L, is
L= X;=0> X;={Ny where Np=>"X;
i=1 i=1 i=1
thus, N, is the number of defaults in the portfolio up to time T

@ Since P[L,, = kf] = P[N,, = K], it is enough to study Ny,
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The mixed binomial model, cont.

@ Since X1, Xy, ... X, are conditionally independent given Z, we have
m k m—k
PIN, = k121 = (7 )ol2) - (2)
@ Hence, we have
m
PN = K =B[N, =k 21 =E | (7)ol - 2| )
which holds regardless if Z is a discrete or continuous random variable.

@ If Z is a continuous random variable on R with density fz(z) then

P =k = [ (7)e@ - pe) e (0

— 00

@ We want to find the loss distribution F; (x) = P[Ly, < x] for x € [0, 00), or
in fact for x € [0,£- m] (why ?)

Alexander Herbertsson (Univ. of Gothenburg) Financial Risk: Credit Risk, Lecture 2 November 20, 2014 5/29



The loss distribution in a mixed binomial model

@ Note that for any positive x we have that
X X
FL(x) =P[lm <x] =P[(Ny < x] =P {Nm < A P [Nm < b” (7)

where | y| is the integer part of y rounded downwards, e.g [3.14] = 3.
® Forn=0,1...,mthen PN, < n] = Z:,OP[Nm = k] which in (7) yields

Fro(x ZP [N = K] (8)
where P [N, = k] is computed by (5 )

@ If Z is a continuous random variable on R with density fz(z) then
PN, = k] is computed by (6) and this in (8) renders that

;) [ (D)pera- syt o

@ Note that F;, (x) in (8) or (9) will be piece-wise constant (i.e. flat) on each
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The loss distribution in a mixed binomial model, cont.

@ Note the formula for the loss distribution in (8) or (9) is rather tedious and
will fail for large values of m (why ?)

@ Fortunately, there is a very convenient approximation of the loss distribution
Fi,(x) =P[Ly < x] when m is "large”

@ Recall that F(x) is the distrib. function of p(Z), i.e F(x) =P [p(Z) < x]
and from last lecture we know that for any x € [0, 1] it holds that

P[% gx} — F(x)=P[p(Z) <x] asm— (10)

@ We also have that
N X
FLm(x):P[ngx]:P[ﬂngx]:P{ S—]

and this in (10) then implies that

Fi,(x)— F (%) as m — o0

m
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The loss distribution in a mixed binomial model, cont.

@ Hence, if mis "large” we have the following approximation for the loss
distribution F;, (x) =P[L, < X]

Fi(x)~ F (—

Em) if mis "large". (11)

for any x € [0,¢m] and where F(x) =P [p(Z) < x].

® Soif mis "large” we can approximate Fy (x) =P[Lm < x] with F (5 m)
instead of numerically compute the involved expression in the RHS of (9

)

@ This will be very useful when computing different risk measures for credit
portfolios, such as Value-at-Risk and expected shortfall

@ Let us define/recap the concept of Value-at-Risk and expected shortfall
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Value-at-Risk

@ We now define/recap the risk measure Value-at-Risk, abbreviated VaR and
the below definition holds for any type of loss L (loss for equity risk, loss for
credit risk, loss operational risk etc etc)

Definition of Value-at-Risk

Given a loss L and a confidence level a € (0,1), then VaR, (L) is given by the
smallest number y such that the probability that the loss L exceeds y is no larger
than 1 — «, that is

VaR,(L) =inf{y e R:P[L>y] <1-—a}
=inf{yeR:1-P[L<y]<1-—a}
=inf{y eR: F(y) > o}

where F;(x) is the distribution of L.

Linearity of Value-at-Risk (VaR): Let L be a loss and let a > 0 and b € R be
constants. Then
VaR,(aL + b) = aVaR,(L) + b (12)
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Example of Value-at-Risk when L is continuous r.v.

Density of L

a=P[L <VaR,(L)]

1—a=P[L> VaR,(L)]

/4
VaR, (L)

Figure: Visualization of definition of VaR,(L) when L is a continuous random
variable. The red region has the area 1 — «
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Value-at-Risk, cont.

)

Note that Value-at-Risk is defined for a fixed time horizon, so the above
definition should also come with a time period, e.g, if the loss L is over one
day, then we talk about a one-day VaR,(L).

In market risk, typically the underlying period studied for the loss is 1 day or
10 days.

In credit risk and in operational risk, one typically consider VaR, (L) for the
loss over one year.

Typical values for a are 95%, 99 or 99.9%, that is o = 0.95, « = 0.99 or
a = 0.999

Note that VaR, by definition, does not give any information about "how bad
things can get”, i.e. the severity of the loss L which may occur with
probabilitiy 1 — «

We will later shortly discuss the expected shortfall which is a measure that
captures the severity of the loss L, given that L > VaR,(L).
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Value-at-Risk, cont.

@ Hence, by definition, VaR,(L) for a period T have the following
interpretation: "We are a % certain that our loss L will not be bigger than
VaR, (L) dollars up to time T"

@ However, we should keep in mind that this sentence can be very misleading
for several reasons.

@ One major reason is that VaR, (L) is computed under an assumption of how
the loss will be distributed, i.e. we use a specific model for L, and this
naturally leads to model risk

@ One typical example of model risk when computing VaR, (L) is that
Fi(x) = P[L < x] is assumed to have a distribution, which maybe (most
likely) not will match the "true" distribution of L, which obviously is difficult
to know for sure.
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Inverse and generalized inverse functions

@ Recall that a function f(x) is strictly monotonic if it is strictly increasing or
strictly decreasing

@ Recall from your first year calculus course, that a strictly monotonic function
f(x) has a unique and well defined inverse f~*(x) such that
1. f~Y(f(x)) =x, forall x in f-s domain
1. f(f'(y)) =y, forallyinfsrange
@ If the function f(x) is monotonic (i.e. not strictly monotonic) then the
concept of a inverse function has to be readjusted

@ Let us here focus on a nondecreasing function F(x).

@ Since F(x) is nondecreasing, it may be "flat" for some regions in its domain
(see e.g. example on bottom on slide 6)

@ This means that in these "flat" regions we can no longer find a unique
inverse function to F(x), so the concept of an inverse function must here be
redefined. Let us do this.
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Inverse and generalized inverse functions, cont

Definition of generalized inverse for a nondecreasing function

Let F(x) be a nondecreasing function on R, i.e. F(x): R — R. The generalized
inverse £ to F is then defined as

F=(y)=inf{xeR: F(x) >y} (13)

with the convention that inf of the empty set is oo, i.e inf § = oco.

@ Note that if F(x) is a strictly increasing function then F—~ = F~1, that is
the generalized inverse F—(y) will simply be the "usual” inverse F~1(y)
defined as on the previous slides

By using the generalized inverse we can now define the a-quantile g, (F) of F(x)
as

Go(F)=F (a)=inf{xeR: F(x)>a}, 0<a<l. (14)
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Generalized inverse, a-quantile and VaR

Hence, in view of the definition of a a-quantile (as a generalized inverse) g (F)
and the definition of Value-at-Risk VaR, (L) we conclude that:

@ Value-at-Risk VaR,(L) is the a-quantile g, (F.) of the loss distribution
Fi(x) where Fi(x) =P[L < x], that is

VaR, (L) = F (@) = gu(FL) (15)
In the case when F;(x) = P[L < x] is continuous, and thus strictly increasing (i.e.

the loss L is a continuous random variable), F;(x) will not have any "flat”
regions, so that F;~ will be the usual inverse function FL_l, and we then have that

VaRy (L) = F () = ga(FL) (16)

Hence, if we can find an analytical expression for the inverse function F[l(y), we
can then due to (16) also find an analytical expression for the risk-measure
Value-at-Risk VaR,(L)
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Value-at-Risk when L is a continuous random variable

@ If the loss L is a continuous random variable so that F;(x) is strictly
increasing and continuous, we have that FL_l(y) is also continuous, and thus
well defined and by definition

@ Furthermore, from the definition of an inverse function (see previous slides)
we have that FL(F[I(y)) =y forall y suchthat 0 <y < 1.

@ From (16) we have

VaR, (L) = F }(«) (17)
so we then conclude that
Fi(VaR,(L)) = FiL(F *(a)) = « (18)
that is,
Fi(VaR,(L)) = « (19)
or alternatively,
P[L < VaR,(L)] = « (20)
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Example of Value-at-Risk when L is continuous r.v.

Fu(x) = [ fi(y)dy

F'(a) = VaRa(L)

1—a=P[L> VaRa(L)]

VaR, (L)

Figure: Visualization of definition of VaR, (L) when L is a continuous random
variable. The red region has the area 1 — «

Alexander Herbertsson (Univ. of Gothenburg) Financial Risk: Credit Risk, Lecture 2 November 20, 2014 17 / 29



Value-at-Risk for static credit portfolios

@ Consider mixed binomial model with m obligors, and individual credit loss .

@ By linearity of VaR, see Equation (12), we can w.l.0.g assume that the size
of each loan is one monetary unit and that the loss £ is in %

@ Let F(x) =P[p(Z) < x] where p(Z) is the mixing distribution where Z can
be a discrete or continuous random variable

@ If we use the exact loss distribution F;_(x) in (8) or (9) we compute VaR
via the generalized inverse of F; (x)

@ However, if mis "large” and Z is a continuous random variable so that F(x)
and F~1(x) are continuous, we combine Equation (11) and (16) to get

VaR, (L)~ £-m- FY(a) (21)

@ If mis "large” and Z is a discrete random variable we combine Equation
(11) and (15) to get that

VaR,(L) = - m- F~(a) (22)
where F<(x) is the generalized inverse of F(x) =P [p(Z) < x].
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Expected shortfall

The expected shortfall ES, (L) is defined as

1

ESa (L) VaR,(L)du.

T1-al,

and if L is a continuous random variable one can show that
ES.(L) =E[L|L > VaR,(L)]

Let F(x) =P [p(Z) < x] where p(Z) is the mixing distribution and Z is a
continuous random variable so that F(x) and F~%(x) are continuous,

Hence, for the same static credit portfolio as on the two previous slides, when m
is large we have the following approximation formula for ES, (L)

ES(L) ~ =™ /1 F~Y(u)du

“1-a
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Mixed binomial models: the beta distribution

@ One example of a mixing binomial model is to let p(Z) = Z where Z is a
beta distribution, Z ~ Beta(a, b), which can generate heavy tails.

@ We say that a random variable Z has beta distribution, Z ~ Beta(a, b), with
parameters a and b, if it's density fz(z) is given by

f7(z) = 5(31 b)zafl(l —2)1 ab>0, 0<z<1 (23)
where
1 a
B(a, b) = /0 2371(1 - z)bfldz = % (24)

Here '(y) is the Gamma function defined as

My)= / ' le tdt (25)
0
which satisfies the relation

My +1)=yI(y) (26)
for any y.
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Mixed binomial models: the beta distribution, cont.

@ By using Equation (24) and (26) one can show that 3(a, b) satisfies the
recursive relation

Bla+1,b) = :abﬁ(a, b).

@ Also note that (23) implies that P[0 < Z < 1] =1, that is Z € [0, 1] with
probability one.

@ If Z has beta distribution with parameters a and b then by using Equation
(24) and (26) one can show that

2 2 a(a+1)
ElZ] = a+b and  E[Z] = (a+b)(a+b+1)
so the above equations together with definition of Var(Z) implies that
Var(Z) = W‘M.
@ By varying the parameters a and b, the density fz(z) can take on quite
different shapes (see next slide). Recall that fz(z) is given by

f2(z) = Z7M1-2)P1 ab>0, 0<z<1
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Mixed binomial models: the beta distribution, cont.

Two different beta densities
14 T T T

12F a=1,b=9 i
a=10,b=90

density

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
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Mixed binomial models: the beta distribution, cont.

@ Consider a mixed binomial model where p(Z) = Z has beta distribution with
parameters a and b. Then, by using (6) one can show that

. (27)

PNy = K] = (m)ﬁ(a+k,b+m_k)

k B(a, b)

@ It is possible to create heavy tails in the distribution P [N, = k] by
choosing the parameters a and b properly in (27). This will then imply more
realistic probabilities for extreme loss scenarios, compared with the standard
binomial loss distribution (see figure on next page).

@ Furthermore, since p(Z) = Z, the distribution of % converges to the
distribution of the beta distribution, i.e

]
m

5(3 B /X M1 -2)tdz asm— oo (28)
) 0

and for large m we use (28) instead of the exact method via (27).
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Mixed binomial models: the beta distribution, cont.

The portfolio credit loss distribution in the standar and mixed binomial model
0.2 T T T T T

o8- I mixed binomial 50, beta(l,g)‘

I binomial(50,0.1)

0.16 q

0.12- q

probability
o
[
T
L

0.08 q

0.06 4

0.02 q

0 5 10 15 20 25 30
number of defaults
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Mixed binomial models: logit-normal distribution

@ Another possibility for mixing distribution p(Z) is to let p(Z) be a

logit-normal distribution. This means that

1
PlZ) = 1+exp(—(pn+02))

where ¢ > 0 and Z ~ N(0, 1), that is Z is a standard normal random
variable. Note that p(Z) € [0,1].

@ Furthermore, if x € (0,1) then p~!(x) is well defined and given by

=2 (i () - n). (29)

@ The mixing distribution F(x) = P[p(Z) < x] =P [Z < p~*(x)] for a
logit-normal distribution is then given by

P~ (%) 1 2

—ef%
oo V2
where p~1(x) is given as in Equation (29) and N(x) is the distribution
function of a standard normal distribution.

F(x)=P[Z < pi(x)] = dz = N(p~*(x))
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Mixed binomial models: logit-normal distribution, cont.

@ Furthermore, the distribution of 2= converges to N(p~*(x)), that is
Nm 1
P|— <x| = N(p~'(x)) asm— oo
m

where x € (0,1) and p~!(x) is given as in Equation (29).

@ In a mixed binomial model with logit-normal distribution as above, it is
difficult to find closed formulas for quantities such as

s PIX = 1] = E[p(2)],

s Var(X;) = E[p(2)] (1 - E[p(2)])
s Cov(X:, X;) = E [p(2)?] — E [p(Z)]? = Var(p(Z)) for i # j

@ Hence, in the mixed binomial model with logit-normal distribution, the
above quantities have to be determined with a computer

@ Next lecture we will study a third mixed binomial model inspired by the
Merton model.
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Correlations in mixed binomial models

® Recall the definition of the correlation Corr (X, Y') between two random
variables X and Y, given by

Cov(X,Y)
v/ Var (X)y/Var (Y)
where Cov(X, Y) =E[XY] —E[X]E[Y] and Var (X)) = E [X?] — E[X].

Corr (X, Y) =

@ Furthermore, also recall that Corr (X, Y') may sometimes be seen as a
measure of the "dependence” between the two random variables X and Y.

@ Now, let us consider a mixed binomial model as presented previously.

® We are interested in finding Corr (X;, X;) for two pairs i, j in the portfolio
(by the homogeneous-portfolio assumption this quantity is the same for any
pair i, j in the portfolio where i # j).

@ Below, we will therefore for notational convenience simply write px for the
correlation Corr (X;, X;).
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Correlations in mixed binomial models, cont.

@ Recall from previous slides that P[X; = 1| Z] = p(Z) where p(Z) is the
mixing variable.

@ Furthermore, we also now that
Cov(X;, X;) =E [p(Z)ﬂ —p® and Var(X;) = p(1 - p) (31)
where p = E [p(2)].
@ Thus, the correlation px in a mixed binomial models is then given by
E [p(2)’] - P*
p(1 - p)

where p = E [p(Z)] = P[X; = 1] is the default probability for each obligor.

pPx = (32)

@ Hence, the correlation px in a mixed binomial is completely determined by
the fist two moments of the mixing variable p(Z), that is E [p(Z)] and

E [p(Z)?].
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Thank you for your attention!
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