Financial Risk: Credit Risk, Lecture 2

Alexander Herbertsson

Centre For Finance/Department of Economics School of Economics, Business and Law, University of Gothenburg

> E-mail: alexander.herbertsson@cff.gu.se or alexander.herbertsson@economics.gu.se

Financial Risk, Chalmers University of Technology, Göteborg Sweden

November 20, 2014

Content of lecture

- Short recapitulation of the mixed binomial model
- Discussion of the loss distribution in the mixed binomial model and how to use the LPA theory to find approximation for the loss for large portfolios
- Recapitulation of Value-at-Risk and Expected shortfall and its use in the mixed binomial loss model
- Study of a mixed binomial loss model with a beta distribution
- Study of a mixed binomial loss model with a logit-normal distribution
- Discussion of correlations etc

Recap of the mixed binomial model

Consider a homogeneous credit portfolio model with m obligors, and where we each obligor can default up to fixed time point, say T. Each obligor have identical credit loss at a default, say ℓ . Here ℓ is a constant.

• Let X_i be a random variable such that

$$X_i = \begin{cases} 1 & \text{if obligor } i \text{ defaults before time } T \\ 0 & \text{otherwise, i.e. if obligor } i \text{ survives up to time } T \end{cases}$$
 (1)

- Let Z be a random variable, discrete or continuous, that represents some common background variable affecting all obligors in the portfolio.
- Since we consider a homogeneous credit portfolio, X₁, X₂,... X_m are identically distributed. Furthermore, we assume the following:
 Conditional on Z, the random variables X₁, X₂,... X_m are independent and each X_i have default probability p(Z) ∈ [0, 1], that is

$$\mathbb{P}\left[X_i = 1 \mid Z\right] = p(Z) \tag{2}$$

so that $\mathbb{P}\left[X_i=1\right]=ar{p}$ for each obligor i where $ar{p}$ is given by

$$\bar{p} = \mathbb{E}[X_i] = \mathbb{E}[\mathbb{E}[X_i | Z]] = \mathbb{E}[p(Z)]$$
(3)

Recap of the mixed binomial model, cont.

- Note that (2) and (3) holds regardless if Z is a discrete or continuous random variable.
- If Z is a continuous random variable on \mathbb{R} with density $f_Z(z)$ then

$$\bar{p} = \mathbb{E}\left[p(Z)\right] = \int_{-\infty}^{\infty} p(z)f_Z(z)dz$$
 (4)

- Recall that we are interested in finding the loss distribution in our homogeneous credit portfolio as specified above
- The total credit loss in the portfolio at time T, called L_m , is

$$L_m = \sum_{i=1}^m \ell X_i = \ell \sum_{i=1}^m X_i = \ell N_m$$
 where $N_m = \sum_{i=1}^m X_i$

thus, N_m is the **number** of defaults in the portfolio up to time T

• Since $\mathbb{P}[L_m = k\ell] = \mathbb{P}[N_m = k]$, it is enough to study N_m .

The mixed binomial model, cont.

• Since $X_1, X_2, ... X_m$ are conditionally independent given Z, we have

$$\mathbb{P}\left[N_m = k \mid Z\right] = \binom{m}{k} p(Z)^k (1 - p(Z))^{m-k}$$

Hence, we have

$$\mathbb{P}\left[N_m = k\right] = \mathbb{E}\left[\mathbb{P}\left[N_m = k \mid Z\right]\right] = \mathbb{E}\left[\binom{m}{k}p(Z)^k(1 - p(Z))^k\right]$$
 (5)

which holds regardless if Z is a discrete or continuous random variable.

• If Z is a continuous random variable on \mathbb{R} with density $f_Z(z)$ then

$$\mathbb{P}\left[N_m = k\right] = \int_{-\infty}^{\infty} \binom{m}{k} p(z)^k (1 - p(z))^{m-k} f_Z(z) dz. \tag{6}$$

• We want to find the loss distribution $F_{L_m}(x) = \mathbb{P}[L_m \leq x]$ for $x \in [0, \infty)$, or in fact for $x \in [0, \ell \cdot m]$ (why ?)

The loss distribution in a mixed binomial model

Note that for any positive x we have that

$$F_{L_m}(x) = \mathbb{P}\left[L_m \le x\right] = \mathbb{P}\left[\ell N_m \le x\right] = \mathbb{P}\left[N_m \le \frac{x}{\ell}\right] = \mathbb{P}\left[N_m \le \left\lfloor \frac{x}{\ell} \right\rfloor\right]$$
 (7) where $|y|$ is the integer part of y rounded downwards, e.g. $|3.14| = 3$.

• For $n=0,1\ldots,m$ then $\mathbb{P}[N_m\leq n]=\sum_{k=0}^n\mathbb{P}[N_m=k]$ which in (7) yields

$$F_{L_m}(x) = \sum_{k=0}^{\lfloor \frac{x}{\ell} \rfloor} \mathbb{P}\left[N_m = k\right]$$
 (8)

where $\mathbb{P}[N_m = k]$ is computed by (5).

• If Z is a continuous random variable on \mathbb{R} with density $f_Z(z)$ then $\mathbb{P}[N_m = k]$ is computed by (6) and this in (8) renders that

$$F_{L_m}(x) = \sum_{k=0}^{\lfloor \frac{\pi}{2} \rfloor} \int_{-\infty}^{\infty} {m \choose k} p(z)^k (1 - p(z))^{m-k} f_Z(z) dz. \tag{9}$$

• Note that $F_{L_m}(x)$ in (8) or (9) will be piece-wise constant (i.e. flat) on each interval $[0,\ell], [\ell,2\ell], \ldots [(m-1)\ell,m\ell], [m\ell,\infty]$ (why ?)

The loss distribution in a mixed binomial model, cont.

- Note the formula for the loss distribution in (8) or (9) is rather tedious and will fail for large values of m (why ?)
- Fortunately, there is a very convenient approximation of the loss distribution $F_{L_m}(x) = \mathbb{P}[L_m \leq x]$ when m is "large"
- Recall that F(x) is the distrib. function of p(Z), i.e $F(x) = \mathbb{P}[p(Z) \le x]$ and from last lecture we know that for any $x \in [0,1]$ it holds that

$$\mathbb{P}\left[\frac{N_m}{m} \le x\right] \to F(x) = \mathbb{P}\left[p(Z) \le x\right] \quad \text{as } m \to \infty \tag{10}$$

We also have that

$$F_{L_m}(x) = \mathbb{P}\left[L_m \le x\right] = \mathbb{P}\left[\ell N_m \le x\right] = \mathbb{P}\left[\frac{N_m}{m} \le \frac{x}{\ell m}\right]$$

and this in (10) then implies that

$$F_{L_m}(x) o F\left(rac{x}{\ell m}
ight)$$
 as $m o \infty$

The loss distribution in a mixed binomial model, cont.

• Hence, if m is "large" we have the following approximation for the loss distribution $F_{L_m}(x) = \mathbb{P}[L_m \leq x]$

$$F_{L_m}(x) \approx F\left(\frac{x}{\ell m}\right)$$
 if m is "large". (11)

for any $x \in [0, \ell m]$ and where $F(x) = \mathbb{P}[p(Z) \le x]$.

- So if m is "large" we can approximate $F_{L_m}(x) = \mathbb{P}[L_m \leq x]$ with $F(\frac{x}{\ell m})$ instead of numerically compute the involved expression in the RHS of (9)
- This will be very useful when computing different risk measures for credit portfolios, such as Value-at-Risk and expected shortfall
- Let us define/recap the concept of Value-at-Risk and expected shortfall

Value-at-Risk

 We now define/recap the risk measure Value-at-Risk, abbreviated VaR and the below definition holds for any type of loss L (loss for equity risk, loss for credit risk, loss operational risk etc etc)

Definition of Value-at-Risk

Given a loss L and a confidence level $\alpha \in (0,1)$, then $\mathrm{VaR}_{\alpha}(L)$ is given by the smallest number y such that the probability that the loss L exceeds y is no larger than $1-\alpha$, that is

$$\begin{aligned} \mathsf{VaR}_{\alpha}(L) &= \inf \left\{ y \in \mathbb{R} : \mathbb{P} \left[L > y \right] \leq 1 - \alpha \right\} \\ &= \inf \left\{ y \in \mathbb{R} : 1 - \mathbb{P} \left[L \leq y \right] \leq 1 - \alpha \right\} \\ &= \inf \left\{ y \in \mathbb{R} : F_L(y) \geq \alpha \right\} \end{aligned}$$

where $F_L(x)$ is the distribution of L.

Linearity of Value-at-Risk (VaR): Let L be a loss and let a>0 and $b\in\mathbb{R}$ be constants. Then

$$VaR_{\alpha}(aL+b) = aVaR_{\alpha}(L) + b \tag{12}$$

Example of Value-at-Risk when *L* is continuous r.v.

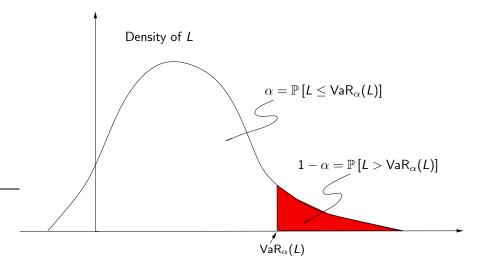


Figure: Visualization of definition of $VaR_{\alpha}(L)$ when L is a continuous random variable. The red region has the area $1-\alpha$

Value-at-Risk, cont.

- Note that Value-at-Risk is defined for a fixed time horizon, so the above definition should also come with a time period, e.g, if the loss L is over one day, then we talk about a one-day $VaR_{\alpha}(L)$.
- In market risk, typically the underlying period studied for the loss is 1 day or 10 days.
- In credit risk and in operational risk, one typically consider $VaR_{\alpha}(L)$ for the loss over one year.
- Typical values for α are 95%, 99 or 99.9%, that is $\alpha=0.95, \alpha=0.99$ or $\alpha=0.999$
- Note that VaR, by definition, does not give any information about "how bad things can get", i.e. the severity of the loss L which may occur with probability $1-\alpha$
- We will later shortly discuss the expected shortfall which is a measure that captures the severity of the loss L, given that $L > VaR_{\alpha}(L)$.

Value-at-Risk, cont.

- Hence, by definition, $VaR_{\alpha}(L)$ for a period T have the following interpretation: "We are α % certain that our loss L will not be bigger than $VaR_{\alpha}(L)$ dollars up to time T"
- However, we should keep in mind that this sentence can be very misleading for several reasons.
- One major reason is that $VaR_{\alpha}(L)$ is computed under an assumption of how the loss will be distributed, i.e. we use a specific model for L, and this naturally leads to model risk
- One typical example of model risk when computing $VaR_{\alpha}(L)$ is that $F_L(x) = \mathbb{P}\left[L \leq x\right]$ is assumed to have a distribution, which maybe (most likely) not will match the "true" distribution of L, which obviously is difficult to know for sure.

Inverse and generalized inverse functions

- Recall that a function f(x) is strictly monotonic if it is strictly increasing or strictly decreasing
- Recall from your first year calculus course, that a strictly monotonic function f(x) has a unique and well defined inverse $f^{-1}(x)$ such that
 - 1. $f^{-1}(f(x)) = x$, for all x in f-s domain
 - 1. $f(f^{-1}(y)) = y$, for all y in f-s range
- If the function f(x) is monotonic (i.e. not strictly monotonic) then the concept of a inverse function has to be readjusted
- Let us here focus on a nondecreasing function F(x).
- Since F(x) is nondecreasing, it may be "flat" for some regions in its domain (see e.g. example on bottom on slide 6)
- This means that in these "flat" regions we can no longer find a unique inverse function to F(x), so the concept of an inverse function must here be redefined. Let us do this.

Inverse and generalized inverse functions, cont

Definition of generalized inverse for a nondecreasing function

Let F(x) be a nondecreasing function on \mathbb{R} , i.e. $F(x) : \mathbb{R} \to \mathbb{R}$. The generalized inverse F^{\leftarrow} to F is then defined as

$$F^{\leftarrow}(y) = \inf \left\{ x \in \mathbb{R} : F(x) \ge y \right\} \tag{13}$$

with the convention that inf of the empty set is ∞ , i.e inf $\emptyset = \infty$.

• Note that if F(x) is a strictly increasing function then $F^{\leftarrow} = F^{-1}$, that is the generalized inverse $F^{\leftarrow}(y)$ will simply be the "usual" inverse $F^{-1}(y)$ defined as on the previous slides

By using the generalized inverse we can now define the α -quantile $q_{\alpha}(F)$ of F(x) as

$$q_{\alpha}(F) = F^{\leftarrow}(\alpha) = \inf\{x \in \mathbb{R} : F(x) \ge \alpha\}, \quad 0 < \alpha < 1.$$
 (14)

Generalized inverse, α -quantile and VaR

Hence, in view of the definition of a α -quantile (as a generalized inverse) $q_{\alpha}(F)$ and the definition of Value-at-Risk VaR $_{\alpha}(L)$ we conclude that:

• Value-at-Risk VaR $_{\alpha}(L)$ is the α -quantile $q_{\alpha}(F_L)$ of the loss distribution $F_L(x)$ where $F_L(x) = \mathbb{P}[L \leq x]$, that is

$$VaR_{\alpha}(L) = F_{L}^{\leftarrow}(\alpha) = q_{\alpha}(F_{L}) \tag{15}$$

In the case when $F_L(x) = \mathbb{P}[L \leq x]$ is continuous, and thus strictly increasing (i.e. the loss L is a continuous random variable), $F_L(x)$ will not have any "flat" regions, so that F_L^{\leftarrow} will be the usual inverse function F_L^{-1} , and we then have that

$$VaR_{\alpha}(L) = F_L^{-1}(\alpha) = q_{\alpha}(F_L)$$
 (16)

Hence, if we can find an analytical expression for the inverse function $F_L^{-1}(y)$, we can then due to (16) also find an analytical expression for the risk-measure Value-at-Risk VaR $_{\alpha}(L)$

Value-at-Risk when L is a continuous random variable

- If the loss L is a continuous random variable so that $F_L(x)$ is strictly increasing and continuous, we have that $F_L^{-1}(y)$ is also continuous, and thus well defined and by definition
- Furthermore, from the definition of an inverse function (see previous slides) we have that $F_L(F_L^{-1}(y)) = y$ for all y such that 0 < y < 1.
- From (16) we have

$$VaR_{\alpha}(L) = F_L^{-1}(\alpha) \tag{17}$$

so we then conclude that

$$F_L(VaR_\alpha(L)) = F_L(F_L^{-1}(\alpha)) = \alpha$$
 (18)

that is.

$$F_L(VaR_\alpha(L)) = \alpha \tag{19}$$

or alternatively,

$$\mathbb{P}\left[L \le \mathsf{VaR}_{\alpha}(L)\right] = \alpha \tag{20}$$

Example of Value-at-Risk when *L* is continuous r.v.

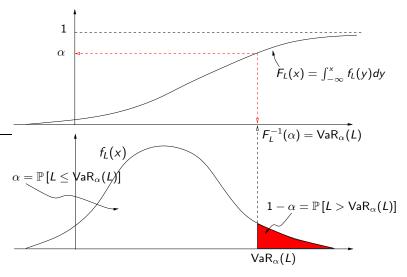


Figure: Visualization of definition of $VaR_{\alpha}(L)$ when L is a continuous random variable. The red region has the area $1-\alpha$

Value-at-Risk for static credit portfolios

- ullet Consider mixed binomial model with m obligors, and individual credit loss $\ell.$
- By linearity of VaR, see Equation (12), we can w.l.o.g assume that the size of each loan is one monetary unit and that the loss ℓ is in %
- Let $F(x) = \mathbb{P}[p(Z) \le x]$ where p(Z) is the mixing distribution where Z can be a discrete or continuous random variable
- If we use the exact loss distribution $F_{L_m}(x)$ in (8) or (9) we compute VaR via the generalized inverse of $F_{L_m}(x)$
- However, if m is "large" and Z is a continuous random variable so that F(x) and $F^{-1}(x)$ are continuous, we combine Equation (11) and (16) to get

$$VaR_{\alpha}(L) \approx \ell \cdot m \cdot F^{-1}(\alpha) \tag{21}$$

• If m is "large" and Z is a discrete random variable we combine Equation (11) and (15) to get that

$$VaR_{\alpha}(L) \approx \ell \cdot m \cdot F^{\leftarrow}(\alpha) \tag{22}$$

where $F^{\leftarrow}(x)$ is the generalized inverse of $F(x) = \mathbb{P}[p(Z) \le x]$.

Expected shortfall

The expected shortfall $\mathsf{ES}_{\alpha}(L)$ is defined as

$$\mathsf{ES}_{lpha}(\mathit{L}) = \frac{1}{1-lpha} \int_{lpha}^{1} \mathsf{VaR}_{\mathit{u}}(\mathit{L}) \mathit{du}.$$

and if L is a continuous random variable one can show that

$$\mathsf{ES}_{lpha}(\mathit{L}) = \mathbb{E}\left[\mathit{L} \,|\, \mathit{L} \geq \mathsf{VaR}_{lpha}(\mathit{L})\right]$$

Let $F(x) = \mathbb{P}[p(Z) \le x]$ where p(Z) is the mixing distribution and Z is a continuous random variable so that F(x) and $F^{-1}(x)$ are continuous,

Hence, for the same static credit portfolio as on the two previous slides, when m is large we have the following approximation formula for $\mathsf{ES}_\alpha(L)$

$$\mathsf{ES}_{\alpha}(L) \approx \frac{\ell \cdot m}{1 - \alpha} \int_{\alpha}^{1} F^{-1}(u) du$$

- One example of a mixing binomial model is to let p(Z) = Z where Z is a beta distribution, $Z \sim \text{Beta}(a, b)$, which can generate heavy tails.
- We say that a random variable Z has beta distribution, $Z \sim \text{Beta}(a, b)$, with parameters a and b, if it's density $f_Z(z)$ is given by

$$f_Z(z) = \frac{1}{\beta(a,b)} z^{a-1} (1-z)^{b-1} \quad a,b>0, \quad 0 < z < 1$$
 (23)

where

$$\beta(a,b) = \int_0^1 z^{a-1} (1-z)^{b-1} dz = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}.$$
 (24)

Here $\Gamma(y)$ is the Gamma function defined as

$$\Gamma(y) = \int_0^\infty t^{y-1} e^{-t} dt \tag{25}$$

which satisfies the relation

$$\Gamma(y+1) = y\Gamma(y) \tag{26}$$

for any y.

• By using Equation (24) and (26) one can show that $\beta(a,b)$ satisfies the recursive relation

$$\beta(a+1,b)=\frac{a}{a+b}\beta(a,b).$$

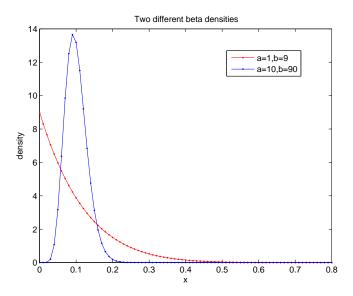
- Also note that (23) implies that $\mathbb{P}[0 \le Z \le 1] = 1$, that is $Z \in [0,1]$ with probability one.
- If Z has beta distribution with parameters a and b then by using Equation (24) and (26) one can show that

$$\mathbb{E}[Z] = \frac{a}{a+b}$$
 and $\mathbb{E}[Z^2] = \frac{a(a+1)}{(a+b)(a+b+1)}$

so the above equations together with definition of Var(Z) implies that $Var(Z) = \frac{ab}{(a+b)^2(a+b+1)}$.

• By varying the parameters a and b, the density $f_Z(z)$ can take on quite different shapes (see next slide). Recall that $f_Z(z)$ is given by

$$f_Z(z) = \frac{1}{\beta(a,b)} z^{a-1} (1-z)^{b-1}$$
 $a,b>0, 0 < z < 1$



• Consider a mixed binomial model where p(Z) = Z has beta distribution with parameters a and b. Then, by using (6) one can show that

$$\mathbb{P}\left[N_m = k\right] = \binom{m}{k} \frac{\beta(a+k, b+m-k)}{\beta(a, b)}.$$
 (27)

- It is possible to create **heavy tails** in the distribution $\mathbb{P}[N_m = k]$ by choosing the parameters a and b properly in (27). This will then imply more realistic probabilities for extreme loss scenarios, compared with the standard binomial loss distribution (see figure on next page).
- Furthermore, since p(Z) = Z, the distribution of $\frac{N_m}{m}$ converges to the distribution of the beta distribution, i.e

$$\mathbb{P}\left[\frac{N_m}{m} \le x\right] \to \frac{1}{\beta(a,b)} \int_0^x z^{a-1} (1-z)^{b-1} dz \quad \text{as } m \to \infty$$
 (28)

and for large m we use (28) instead of the exact method via (27).



Mixed binomial models: logit-normal distribution

• Another possibility for mixing distribution p(Z) is to let p(Z) be a logit-normal distribution. This means that

$$p(Z) = \frac{1}{1 + exp(-(\mu + \sigma Z))}$$

where $\sigma > 0$ and $Z \sim N(0,1)$, that is Z is a standard normal random variable. Note that $p(Z) \in [0,1]$.

• Furthermore, if $x \in (0,1)$ then $p^{-1}(x)$ is well defined and given by

$$\rho^{-1}(x) = \frac{1}{\sigma} \left(\ln \left(\frac{x}{1 - x} \right) - \mu \right). \tag{29}$$

• The mixing distribution $F(x) = \mathbb{P}\left[p(Z) \le x\right] = \mathbb{P}\left[Z \le p^{-1}(x)\right]$ for a logit-normal distribution is then given by

$$F(x) = \mathbb{P}\left[Z \le p^{-1}(x)\right] = \int_{-\infty}^{p^{-1}(x)} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} dz = N(p^{-1}(x))$$

where $p^{-1}(x)$ is given as in Equation (29) and N(x) is the distribution function of a standard normal distribution.

Mixed binomial models: logit-normal distribution, cont.

• Furthermore, the distribution of $\frac{N_m}{m}$ converges to $N(p^{-1}(x))$, that is

$$\mathbb{P}\left[\frac{N_m}{m} \le x\right] \to N(p^{-1}(x)) \quad \text{as } m \to \infty$$
 (30)

where $x \in (0,1)$ and $p^{-1}(x)$ is given as in Equation (29).

- In a mixed binomial model with logit-normal distribution as above, it is difficult to find closed formulas for quantities such as
 - $\mathbb{P}[X_i = 1] = \mathbb{E}[p(Z)],$
 - $Var(X_i) = \mathbb{E}[p(Z)](1 \mathbb{E}[p(Z)])$
 - $Cov(X_i, X_j) = \mathbb{E}\left[p(Z)^2\right] \mathbb{E}\left[p(Z)\right]^2 = Var(p(Z))$ for $i \neq j$
- Hence, in the mixed binomial model with logit-normal distribution, the above quantities have to be determined with a computer
- Next lecture we will study a third mixed binomial model inspired by the Merton model.

Correlations in mixed binomial models

• Recall the definition of the correlation Corr(X, Y) between two random variables X and Y, given by

$$Corr(X, Y) = \frac{Cov(X, Y)}{\sqrt{Var(X)}\sqrt{Var(Y)}}$$

where $Cov(X, Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$ and $Var(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2$.

- Furthermore, also recall that Corr(X, Y) may sometimes be seen as a measure of the "dependence" between the two random variables X and Y.
- Now, let us consider a mixed binomial model as presented previously.
- We are interested in finding $Corr(X_i, X_j)$ for two pairs i, j in the portfolio (by the homogeneous-portfolio assumption this quantity is the same for any pair i, j in the portfolio where $i \neq j$).
- Below, we will therefore for notational convenience simply write ρ_X for the correlation $\operatorname{Corr}(X_i, X_j)$.

Correlations in mixed binomial models, cont.

- Recall from previous slides that $\mathbb{P}[X_i = 1 | Z] = p(Z)$ where p(Z) is the mixing variable.
- Furthermore, we also now that

$$Cov(X_i, X_j) = \mathbb{E}\left[p(Z)^2\right] - \bar{p}^2 \quad \text{and} \quad Var(X_i) = \bar{p}(1 - \bar{p})$$
 (31)

where $\bar{p} = \mathbb{E}[p(Z)]$.

ullet Thus, the correlation ho_X in a mixed binomial models is then given by

$$\rho_X = \frac{\mathbb{E}\left[p(Z)^2\right] - \bar{p}^2}{\bar{p}(1 - \bar{p})} \tag{32}$$

where $\bar{p} = \mathbb{E}[p(Z)] = \mathbb{P}[X_i = 1]$ is the default probability for each obligor.

• Hence, the correlation ρ_X in a mixed binomial is completely determined by the fist two moments of the mixing variable p(Z), that is $\mathbb{E}[p(Z)]$ and $\mathbb{E}[p(Z)^2]$.

Thank you for your attention!