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Content of Lecture

Discussion of a mixed binomial model inspired by the Merton model

Derive the large-portfolio approximation formula in this framework

Discussion how to incorporate random losses in the mixed binomial
loss model
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The mixed binomial model inspired by the Merton Model

Consider a credit portfolio model, not necessary homogeneous, with m

obligors, and where each obligor can default up to fixed time point, say T .

Assume that each obligor i (think of a firm named i) follows the Merton
model, in the sense that obligor i-s assets Vt,i follows the dynamics

dVt,i = µiVt,idt + σiVt,idBt,i (1)

where Bt,i is a stochastic process defined as

Bt,i =
√

ρWt,0 +
√

1 − ρWt,i (2)

where ρ ∈ [0, 1] and Wt,0, Wt,i , . . . , Wt,m are independent standard
Brownian motions.

It is then possible to show that Bt,i is also a standard Brownian motion.
Hence, due to (1) we then know that Vt,i is a GBM so by using Ito´s
lemma, we get

Vt,i = V0,ie
(µi− 1

2 σ
2
i )t+σiBt,i (3)
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Stochastic processes and the Brownian motion

A continuous-time stochastic process (Zt)t∈[0,∞), is a collection of random
variables indexed by time t ∈ [0,∞),

For a given random outcome, a continuous-time stochastic process Zt can
be seen as a function of time t ≥ 0

Example of a continuous-time stochastic process is the Brownian motion
(Wt)t≥0 sometimes also denoted a Wiener process.

The following holds for a Brownian motion (Wt)t≥0

1. W0 = 0

2. (Wt)t≥0 has a continuous path with probability one

3. For 0 ≤ s < t then Wt − Ws ∼ N(0, t − s), i.e. Wt − Ws is normally
distributed with zero mean and variance t − s.

4. (Wt)t≥0 has independent increments, i.e. for any time points
0 < s1 < t1 ≤ s2 < t2 then Wt1 − Ws1 is independent of Wt2 − Ws2
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Brownian motion and Geometric Brownian motion

Different trajectories for a Brownian motion Wt and corresponding Geometric
Brownian motion Vt = V0e

(µ− 1
2 σ

2)t+σ
2Wt for V0 = 50, µ = 0.02, σ = 0.2
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Correlated Brownian motions Bt,i

Correlated Brownian motions Bt,i , i = 1, 2, 3, given by (2) for different ρ
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Correlated Geometrical Brownian motions Vt,i

Correlated geom. Brownian motions Vt,i as in (3) when Bt,i as in (2) for different
ρ, and same as in prev. slide. Vt,i = 50, µi = 0.02, σi = 0.2 for each i = 1, 2, 3
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The mixed binomial model inspired by the Merton Model

The intuition behind (1) and (2) is that the asset for each obligor i is driven
by a common process Wt,0 representing the economic environment, and an
individual process Wt,i unique for obligor i , where i = 1, 2, . . . , m.

This means that the asset for each obligor i , depend both on a
macroeconomic random process (common for all obligors) and an
idiosyncratic random process (i.e. unique for each obligor). This will create
a dependence among these obligors. To see this, recall that
Cov(Xi , Xj) = E [XiXj ] − E [Xi ] E [Xj ] so due to (2)

Cov (Bt,i , Bt,j) = E [Bt,iBt,j ] − E [Bt,i ]E [Bt,j ]

= E

[(√
ρWt,0 +

√

1 − ρWt,i

)(√
ρWt,0 +

√

1 − ρWt,j

)]

= E
[

ρW 2
t,0

]

+
√

ρ
√

1 − ρ (E [Wt,0Wt,i ] + E [Wt,0Wt,j ])

+ (1 − ρ) E [Wt,jWt,i ]

= ρE
[

W 2
t,0

]

= ρt

where the third equality is due to E [Wt,jWt,i ] = 0 when i 6= j .
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The mixed binomial model inspired by the Merton Model

Hence, Cov (Bt,i , Bt,j) = ρt which implies that there is a dependence of the
processes that drives the asset values Vt,i . To be more specific,

Corr (Bt,i , Bt,j) =
Cov (Bt,i , Bt,j)

√

Var (Bt,i )
√

Var (Bt,i )
=

ρt√
t
√

t
= ρ (4)

so Corr (Bt,i , Bt,j) = ρ which is the mutual dependence among the obligors
created by the macroeconomic latent variable Wt,0

Note that if ρ = 0, we have Corr (Bt,i , Bt,j) = 0 which makes the asset
values Vt,1, Vt,2, . . . , Vt,m independent (so the obligors are independent).

Next, let Di be the debt level for each obligor i and recall from the Merton
model that obligor i defaults if VT ,i ≤ Di , that is if

V0,ie
(µi− 1

2 σ
2
i )T+σiBT ,i < Di (5)

which, by using the definition of Bt,i is equivalent with the event

lnV0,i − lnDi + (µi −
1

2
σ2

i )T + σi

(√
ρWT ,0 +

√

1 − ρWT ,i

)

< 0 (6)
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The mixed binomial model inspired by the Merton Model

Next, recall that for each i , Wi ,T ∼ N(0, T ), i.e Wi ,T is normally distributed
with zero mean and variance T . Hence, if Yi ∼ N(0, 1), Wi ,T has the same

distribution as
√

TYi for i = 0, 1, . . . , m where Y0, Y1, . . . , YM also are
independent. Furthermore, define Z as Y0, i.e Z = Y0. This in (6) yields

lnV0,i − ln Di + (µi −
1

2
σ2

i )T + σi

(√
ρ
√

TZ +
√

1 − ρ
√

TYi

)

< 0 (7)

and dividing with σi

√
T renders

lnV0,i − ln Di + (µi − 1
2σ2

i )T

σi

√
T

+
√

ρZ +
√

1 − ρYi < 0. (8)

We can rewrite the inequality (8) as

Yi <
−
(

Ci +
√

ρZ
)

√
1 − ρ

(9)

where Ci is a constant given by

Ci =
ln (V0,i/Di ) + (µi − 1

2σ2
i )T

σi

√
T

(10)
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The mixed binomial model inspired by the Merton Model

Hence, from the previous slides we conclude that

VT ,i < Di is equivalent with Yi <
−
(

Ci +
√

ρZ
)

√
1 − ρ

(11)

where Ci is a constant given by (10). Next define Xi as

Xi =

{

1 if VT ,i < Di

0 if VT ,i > Di
(12)

Then (11) implies that

P [Xi = 1 |Z ] = P [VT ,i < Di |Z ] = P

[

Yi <
−
(

Ci +
√

ρZ
)

√
1 − ρ

∣

∣

∣

∣

∣

Z

]

= N

(

−
(

Ci +
√

ρZ
)

√
1 − ρ

) (13)

where N(x) is the distribution function of a standard normal distribution.

The last equality in (13) follows from the fact that Yi ∼ N(0, 1) and that Yi

is independent of Z in (11).
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The mixed binomial model inspired by the Merton Model

Next, assume that all obligors in the model are identical, so that V0,i = V0,
Di = D, µi = µ and thus Ci = C for i = 1, 2, . . . , m.

Then we have a homogeneous static credit portfolio, where we consider the
time period up to T .

Furthermore, Equation (13) implies that

P [Xi = 1 |Z ] = N

(

−
(

C +
√

ρZ
)

√
1 − ρ

)

(14)

where C is a constant given by (10) with V0,i = V0, Di = D, σi = σ and
thus Ci = C for all obligors i .

Let Z be the ”economic background variable” in our homogeneous portfolio
and define p(Z ) as

p(Z ) = N

(

−
(

C +
√

ρZ
)

√
1 − ρ

)

(15)

where N(x) is the distribution function of a standard normal distribution.
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The mixed binomial model inspired by the Merton Model

Since, p(Z ) ∈ [0, 1], we would like to use p(Z ) in a mixed binomial model.

To be more specific, let X1, X2, . . . Xm be identically distributed random
variables such that Xi = 1 if obligor i defaults before time T and Xi = 0
otherwise.

Furthermore, conditional on Z , the random variables X1, X2, . . .Xm are
independent and each Xi have default probability p(Z ), that is

P [Xi = 1 |Z ] = p(Z ) = N

(

−
(

C +
√

ρZ
)

√
1 − ρ

)

. (16)

We call this the mixed binomial model inspired by the Merton model or
sometimes simply a mixed binomial Merton model.
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The mixed binomial model inspired by the Merton Model

Recall that the total credit loss in the portfolio at time T , called Lm, is

Lm =

m
∑

i=1

ℓXi = ℓ

m
∑

i=1

Xi = ℓNm where Nm =

m
∑

i=1

Xi

In the mixed binomial Merton model Z is a continuous random variable on
R so from last lecture we know that the loss distribution FLm

(x) is given by

FLm
(x) =

⌊ x
ℓ⌋
∑

k=0

∫ ∞

−∞

(

m

k

)

p(z)k (1 − p(z))m−k 1√
2π

e−
z2

2 dz. (17)

where p(u) = N

(

−(C+
√

ρu)√
1−ρ

)

However, if m is ”large” we have the following approximation for the loss
distribution FLm

(x) = P [Lm ≤ x]

FLm
(x) ≈ F

( x

ℓm

)

if m is ”large”. (18)

for any x ∈ [0, ℓm] and where F (x) = P [p(Z ) ≤ x].
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The mixed binomial Merton model and LPA, cont.

We therefore next want to find an explicit expression of F (x) where

F (x) = P [p(Z ) ≤ x ]. From (16) we know that p(Z ) = N

(

−(C+
√

ρZ)√
1−ρ

)

where Z is a standard normal random variable, i.e. Z ∼ N(0, 1).

Hence, F (x) = P [p(Z ) ≤ x ] = P

[

N

(

−(C+
√

ρZ)√
1−ρ

)

≤ x

]

so

P

[

N

(

−
(

C +
√

ρZ
)

√
1 − ρ

)

≤ x

]

= P

[

−
(

C +
√

ρZ
)

√
1 − ρ

≤ N−1(x)

]

= P

[

−Z ≤ 1√
ρ

(

√

1 − ρN−1(x) + C
)

]

= N

(

1√
ρ

(

√

1 − ρN−1(x) + C
)

)

where the last equality is due to
P [−Z ≤ x ] = P [Z ≥ −x] = 1− P [Z ≤ −x ] and 1 −N(−x) = N(x) for any
x , due to the symmetry of a standard normal random variable.
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The mixed binomial Merton model and LPA, cont.

Hence, F (x) = N
(

1√
ρ

(√
1 − ρN−1(x) + C

)

)

so what is left is to find C .

Since our model is inspired by the Merton model, we have that

Xi =

{

1 if VT ,i < D

0 if VT ,i > D
(19)

so P [Xi = 1] = P [VT ,i < D]. However, from (8) and (11) we conclude that

VT ,i < D ⇔ √
ρZ +

√

1 − ρYi ≤ −C (20)

where C is given by Equation (10) in the homogeneous case where
V0,i = V0, Di = D, σi = σ, µi = µ and consequently Ci = C for
i = 1, 2, . . . , m.

Furthermore, since Z and Yi are standard normals then
√

ρZ +
√

1 − ρYi

will also be standard normal. Hence, P
[√

ρZ +
√

1 − ρYi ≤ −C
]

= N (−C )
and this observation together with (20) implies that

P [Xi = 1] = P [VT ,i < D] = N (−C ) . (21)
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The mixed binomial Merton model and LPA, cont.

Recall that p̄ = E [p(Z )] =
∫ 1

0 p(z)fZ (z)dz so p̄ = P [Xi = 1] since
P [Xi = 1 |Z ] = p(Z ) and thus

P [Xi = 1] = E [P [Xi = 1 |Z ]] = E [p(Z )] = p̄

Hence, from (21) we have p̄ = N (−C ) so

C = −N−1 (p̄) (22)

which means that we can ignore C (and thus also ignore V0, D, σ and µ, see
(10)) and instead directly work with the default probability p̄ = P [Xi = 1].
Hence, we estimate p̄ to 5%, say, which then implicitly defines the quantizes
V0, D, σ and µ via (10) and (22).

Finally, going back to F (x) = N
(

1√
ρ

(√
1 − ρN−1(x) + C

)

)

and using (22)

we conclude that

F (x) = N

(

1√
ρ

(

√

1 − ρN−1(x) − N−1 (p̄)
)

)

(23)

where F (x) = P [p(Z ) ≤ x ].
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The mixed binomial Merton model and LPA, cont.

Hence, if m is large enough, we can in the mixed binomial model inspired by
the Merton model, use (34) to get the following approximation for the loss
distribution FLm

(x) = P [Lm ≤ x]

P [Lm ≤ x ] ≈ N

(

1√
ρ

(

√

1 − ρN−1
( x

ℓm

)

− N−1 (p̄)
)

)

. (24)

where p̄ = P [Xi = 1] is the individual default probability for each obligor.

The approximation (23) or equivalently, (24) is sometimes denoted the LPA

in a static Merton framework, and was first introduced by Vasicek 1991, at
KMV, in the paper ”Limiting loan loss probability distribution”.

The LPA in a Merton framework and its offsprings (i.e. variants) is today
widely used in the industry (Moody’s-KMV, CreditMetrics etc. etc.) for risk
management of large credit/loan portfolios, especially for computing
regulatory capital in Basel II and Basel III (Basel III is currently being
implemented (since end of 2013)).
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The mixed binomial Merton model: The role of ρ

Recall from (4), that ρ was the correlation parameter describing the
dependence between the Brownian motions Bt,i that drives each obligor i ’s
asset price, i.e. Cov(Bt,i , Bt,j) = ρt for all t > 0 so Corr(Bt,i , Bt,j) = ρ.

Since Xi = 1{VT ,i≤D} we know that if ρ > 0 then Xi and Xj are dependent

in the sense that Cov(Xi , Xj) 6= 0. To see this, note that if ρ > 0 then

Cov(Xi , Xj) = E
[

1{VT ,i≤D}1{VT ,j≤D}
]

− E
[

1{VT ,i≤D}
]

E
[

1{VT ,j≤D}
]

= P [VT ,i ≤ D, VT ,j ≤ D] − P [VT ,i ≤ D] P [VT ,j ≤ D]

= P [VT ,i ≤ D, VT ,j ≤ D] − p̄2

(25)

and P [VT ,i ≤ D, VT ,j ≤ D] 6= p̄2 since Corr(Bt,i , Bt,j) = ρ > 0 implies (see
also Equation (20) and (21))

P [VT ,i ≤ D, VT ,j ≤ D] = P

[

BT ,i < −
√

TC , BT ,j < −
√

TC
]

6=P

[

BT ,i < −
√

TC
]

P

[

BT ,j < −
√

TC
]

= p̄2.

Hence, Cov(Xi , Xj) > 0 when ρ > 0 since Cov(Xi , Xj) = Var(p(Z )) > 0 for
i 6= j .
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The mixed binomial Merton model: The role of ρ, cont.

Next, assume that ρ = 0 so that Cov(Bt,i , Bt,j) = 0. Furthermore, by (2) we
have that Bt,i = Wt,i when ρ = 0 since

Bt,i =
√

0Wt,0 +
√

1 − 0Wt,i = Wt,i (26)

where Wt,0, Wt,i , . . . , Wt,m are independent standard Brownian motions.

Equation (26) and the independence among Wt,0, Wt,i , . . . , Wt,m then
imply

P [VT ,i ≤ D, VT ,j ≤ D] = P

[

BT ,i < −
√

TC , BT ,j < −
√

TC
]

= P

[

WT ,i < −
√

TC , WT ,j < −
√

TC
]

= P

[

WT ,i < −
√

TC
]

P

[

WT ,j < −
√

TC
]

= P [VT ,i ≤ D] P [VT ,j ≤ D] = p̄2

and plugging this into (25) yields that Cov(Xi , Xj) = 0.
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The mixed binomial Merton model: The role of ρ, cont.

From the above studies we conclude that

Cov(Xi , Xj) = 0 if ρ = 0 (27)

and
Cov(Xi , Xj ) > 0 if ρ > 0. (28)

We therefore conclude that ρ is a measure of default dependence among
the zero-one variables X1, X2, . . . , Xm in the mixed binomial Merton model.
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The mixed Merton binomial model and LPA

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

loss fraction (in %)

pr
ob

ab
ili

ty
 (

in
 %

) 
 

Large portfolio approximation for different correlations. Individual default probability, p=5%

 

 

ρ=1%

ρ=30%

ρ=50%

ρ=70%

ρ=95%

Alexander Herbertsson (Univ. of Gothenburg) Financial Risk: Credit Risk, Lecture 3 November 25, 2014 22 / 31



The mixed Merton binomial model and LPA, cont.

Given the limiting distribution F (x)

F (x) = N

(

1√
ρ

(

√

1 − ρN−1(x) − N−1 (p̄)
)

)

(29)

we can also find the density fLPA(x) of F (x), that is fLPA(x) = dF (x)
dx

.

It is possible to show that

fLPA(x) =

√

1 − ρ

ρ
exp

(

1

2
(N−1(x))2 − 1

2ρ

(

N−1 (p̄) −
√

1 − ρN−1(x)
)2
)

(30)

This density is just an approximation, and fails for small number of the loss
fraction.
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The mixed Merton binomial model and LPA, cont.
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The mixed Merton binomial model and LPA, cont.
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The mixed Merton binomial model and LPA, cont.
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VaR in the mixed binomial Merton model

Consider a static credit portfolio with m obligors in a mixed binomial model
inspired by the Merton framework where

the individual one-year default probability is p̄

the individual loss is ℓ

the default correlation is ρ

By assuming the LPA setting we can now state the following result for the
one-year credit Value-at-Risk VaRα(L) with confidence level 1 − α.

VaR in the mixed binomial Merton model using the LPA setting

With notation and assumptions as above, the one-year VaRα(L) is given by

VaRα(L) = ℓ · m · N
(√

ρN−1(α) + N−1(p̄)√
1 − ρ

)

. (31)

Useful exercise: Derive the formula (31).

Note that variants of the formula (31) is extensively used for computing
regulatory capital in Basel II and Basel III
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Random losses in the mixed binomial loss model

In the last three lectures the individual loss ℓi for each obligor i have been a
constant ℓ same for all obligors, when studying the mixed binomial loss
model, that is ℓ = ℓ1 = ℓ2 = . . . = ℓm

It is possible to extend the mixed binomial loss models to allow for random
losses ℓi for each obligor i = 1, 2, . . . , m

By homogeneity, the distribution of these losses must be same for all
obligors, and by linearity of VaR, the losses are in percent, i.e. values in [0, 1]

Let Z be the mixing distribution in a mixed binomial model with individual
default probability p(Z ) = P [Xi = 1 |Z ] same for all obligors.

One way to introduce random losses, is to let the individual losses ℓi(Z ) be
random variables which conditional on Z , are i.i.d, all having the distribution
ℓ(Z ) for some function ℓ(x) ∈ [0, 1] for all x

Hence, conditionally on Z , then ℓ1(Z ), ℓ2(Z ), . . . , ℓm(Z ) are i.i.d with
distribution given by ℓ(Z )
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Random losses in the mixed binomial loss model, cont.

The portfolio loss Lm will now be given by Lm =
∑m

i=1 ℓi (Z )Xi

Depending on the nature of the individual loss distribution ℓ(Z ) one can
sometimes get closed form expressions for the exact loss distribution
FLm

(x) = P [Lm ≤ x ], for example if ℓ(Z ) is a discrete distribution

Conditionally on Z , the random variables ℓ1(Z )X1, ℓ2(Z )X2, . . . ℓm(Z )Xm are
i.i.d with distribution ℓ(Z )p(Z ).

Thus, conditionally on Z we can use the law of large numbers for Lm

m
to

conclude that

given a ”fixed” outcome of Z then
Lm

m
→ ℓ(Z )p(Z ) as m → ∞ (32)

Since a.s convergence implies convergence in distribution then (32) implies
that for any x ∈ [0, 1] we have

P

[

Lm

m
≤ x

]

→ P [ℓ(Z )p(Z ) ≤ x ] when m → ∞. (33)
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Random losses in the mixed binomial loss model, cont.

We also have for any x ∈ [0,∞), or in fact any x ∈ [0, m] (why?) that

FLm
(x) = P [Lm ≤ x ] = P

[

Lm

m
≤ x

m

]

and this in (33) then implies that

FLm
(x) → P

[

ℓ(Z )p(Z ) ≤ x

m

]

as m → ∞

where we recall that ℓ(Z ) ∈ [0, 1].

Hence, if m is ”large” we have the following approximation

FLm
(x) ≈ P

[

ℓ(Z )p(Z ) ≤ x

m

]

for any x ∈ [0, m] (34)

Depending on the nature of ℓ(Z ) one can sometimes get closed form
expressions of P [ℓ(Z )p(Z ) ≤ x ], for example if ℓ(Z ) is a discrete distribution
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Thank you for your attention!
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