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ALLOWED TO BE USED ON THE EXAM

1. Extreme value statistics

Generalized Pareto cumulative distribution function:
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









1− (1 + γ
σx)
−1/γ for x ≥ 0, if γj > 0

e−
x

σ for x ≥ 0, if γj = 0

1− (1 + γ
σx)
−1/γ for x ≥ 0 and x < −σ

γ , if γj < 0

Generalized Extreme Value cumulative distribution function:
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Poisson process:
A counting process N(t) is a Poisson process if

• The numbers of events which occur in disjoint time intervals are mutually independent
• N(t+ s)−N(s) has a Poisson distribution for any s, t ≥ 0, i.e.

P [N(s+ t)−N(s) = k] =
λk

k!
e−λt, for any s, t ≥ 0 and k = 0, 1, 2, . . .

Here λ is the ”intensity parameter”. One interpretation is that λ is the expected number of events
in any interval of length 1.

ML inference:
With l(θ) denoting the log likelihood function, the expected and observed information matrices

are

I(θ) = Eθ(−
∂

∂θi

∂

∂θj
l(θ)) and I(θ) = (− ∂

∂θi

∂

∂θj
l(θ)),

respectively. I(θ) can be estimated by I(θ̂) where θ̂ are the ML estimates of the parameters θ.

The ML estimate θ̂ = θ̂1, . . . θ̂d asymptotically has a mean zero multivariate normal distribution
with covariance matrix I(θ)−1.

Partition the parameter vector θ into two parts, θ = (θ1, θ2) and write θ∗2 for the value of of θ2
which maximises l(θ) = l(θ1, θ2) over θ2 for θ1. A Likelihood Ratio (LR) test then rejects the null
hypothesis that θ1 takes the value θ01 at the significance level α if

2(l(θ̂)− l(θ01, θ̂2)) > χ2
α(d− p),

where χ2
α(d− p) is the 1− α quantile of the χ2-distribution with d− p degrees of freedom, where

p and d are the dimensions (=lengths) of the vectors θ and θ2, respectively.

Dependence and the extremal index:
The extremal index, θ is obtained as 1/{asymptotic mean cluster length}. If L1, L2, . . . is a

stationary stochastic process with marginal cumulative distribution function F (x) and extremal
index θ and Mn = max{L1, L2, . . . , Ln then asymptotically

P [Mn ≤ x] = F (x)θn.

1



2 FORMULA SHEET FOR FINANCIAL RISK

2. Value-at-Risk and expected shortfall

Definition of Value-at-Risk:
Given a loss L and a confidence level α ∈ (0, 1), the 100×α% Value-at-Risk, denoted VaRα(L)

is the α-quantile of the distribution function FL(x) = P [L ≤ x], that is

VaRα(L) = F←L (α) (2.1)

where F←L (x) is the generalized inverse of FL(x). Hence, VaRα(L) is given by the smallest number
y such that the probability that the loss L exceeds y is no larger than 1− α, that is

VaRα(L) = inf {y ∈ R : P [L > y] ≤ 1− α}
= inf {y ∈ R : 1− P [L ≤ y] ≤ 1− α}
= inf {y ∈ R : FL(y) ≥ α}

where FL(x) = P [L ≤ x] is the distribution of L.

In the case when FL(x) = P [L ≤ x] is continuous, and thus strictly increasing (i.e. the loss L
is a continuous random variable), then F←L (x) will be the inverse function F−1L (x), and we have

VaRα(L) = F−1L (α) (2.2)

which means that VaRα(L) is the solution xα to the equation

FL(xα) = α.

Definition of Expected shortfall: Given a loss L and a confidence level α ∈ (0, 1), the 100×α%
expected shortfall, denoted ESα(L) is defined as

ESα(L) =
1

1− α

∫ 1

α

VaRu(L)du

and if L is a continuous random variable one can show that

ESα(L) = E [L |L ≥ VaRα(L)] =
1

1− α

∫

∞

VaRα(L)

xfL(x)dx

where fL(x) is the density of the loss L.

Linearity of Value-at-Risk and Expected shortfall: Let L be a loss and let a > 0 and b ∈ R

be constants. Then

VaRα(aL+ b) = aVaRα(L) + b (2.3)

and

ESα(aL+ b) = aESα(L) + b. (2.4)

The relations (2.3) and (2.4) are often useful in practical computations.

3. The mixed binomial model

Let Z be a random variable on R and let p(x) : R 7→ [0, 1] be a function. Define the random
variable p(Z) ∈ [0, 1] with mean p̄, that is

E [p(Z)] = p̄. (3.1)

If Z is a continuous random variable with density fZ(z) then

E [p(Z)] =

∫

∞

−∞

p(z)fZ(z)dz = p̄. (3.2)

Let X1, X2, . . . Xm be identically distributed random variables such that Xi = 1 if obligor i

defaults before time T andXi = 0 otherwise. Furthermore, conditional on Z, the random variables
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X1, X2, . . . Xm are independent and eachXi have default probability p(Z) so P [Xi = 1 |Z] = p(Z).
We then get that

P [Xi = 1] = E [Xi] = E [E [Xi |Z]] = E [p(Z)] = p̄

where the last equality is due to (3.1). Next, letting all losses be the same and constant given by,
say ℓ, then the total credit loss in the portfolio at time T , called Lm, is

Lm =

m
∑

i=1

ℓXi = ℓ

m
∑

i=1

Xi = ℓNm where Nm =

m
∑

i=1

Xi

thus, Nm is the number of defaults in the portfolio up to time T . Since

P [Lm = kℓ] = P [Nm = k]

it is enough to studyNm. Since the random variablesX1, X2, . . . Xm are conditionally independent,
given the outcome Z, we have

P [Nm = k |Z] =

(

m

k

)

p(Z)k(1− p(Z))m−k.

Hence, we have

P [Nm = k] = E [P [Nm = k |Z]] = E

[(

m

k

)

p(Z)k(1− p(Z))k
]

(3.3)

which holds regardless if Z is a discrete or continuous random variable.
If Z is a continuous random variable on R with density fZ(z) then

P [Nm = k] =

∫

∞

−∞

(

m

k

)

p(z)k(1− p(z))m−kfZ(z)dz. (3.4)

3.1. Some examples of mixing distributions. Below we list three examples of mixing distri-
butions frequently used in the industry:

Example 1: A mixed binomial model with p(Z) = Z where Z is a beta distribution, Z ∼
Beta(a, b) and by definition of a beta distribution it holds that P [0 ≤ Z ≤ 1] = 1 so that p(Z) ∈
[0, 1]. We say that a random variable Z has beta distribution, Z ∼ Beta(a, b), with parameters a
and b, if it’s density fZ(z) is given by

fZ(z) =
1

β(a, b)
za−1(1− z)b−1 a, b > 0, 0 < z < 1 (3.1.1)

where

β(a, b) =

∫ 1

0

za−1(1− z)b−1dz =
Γ(a)Γ(b)

Γ(a+ b)
. (3.1.2)

Here Γ(y) is the Gamma function defined as

Γ(y) =

∫

∞

0

ty−1e−tdt (3.1.3)

which satisfies the relation

Γ(y + 1) = yΓ(y) (3.1.4)

for any y. By using Equation (3.1.2) and (3.1.4) one can show that β(a, b) satisfies the recursive
relation

β(a+ 1, b) =
a

a+ b
β(a, b).

Example 2: Another possibility for mixing distribution p(Z) is to let p(Z) be a logit-normal
distribution. This means that

p(Z) =
1

1 + exp (−(µ+ σZ))

where µ and σ are constants with σ > 0 and Z is a standard normal. Note that p(Z) ∈ [0, 1].
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Example 3: The mixed binomial model inspired by the Merton model with p(Z) given by

p(Z) = N

(

N−1 (p̄)−√
ρZ√

1− ρ

)

(3.1.5)

where Z is a standard normal and N(x) is the distribution function of a standard normal distri-
bution. Furthermore, ρ ∈ (0, 1) and p̄ = P [Xi = 1]. Note that p(Z) ∈ [0, 1].

3.2. Large Portfolio Approximation (LPA) for mixed binomial models. The following
theorem is very useful when considering the loss distribution for a large credit portfolio, i.e. when
m is large.

Theorem 3.1. With notation as above, for any x ∈ [0, 1] it holds that

P

[

Nm

m
≤ x

]

→ P [p(Z) ≤ x] when m → ∞. (3.2.1)

The distribution P [p(Z) ≤ x] is called the Large Portfolio Approximation (LPA) to the distribution
of Nm

m .

Hence, the above result implies that in a mixed binomial model, the distribution of the fractional
number of defaults Nm

m in the portfolio converges to the distribution of the random variable p(Z)

as m → ∞. Furthermore, if p(Z) has heavy tails, then the random variable Nm

m will also have
heavy tails, as m → ∞, which then implies a strong default dependence in the credit portfolio.

Example: In the mixed binomial model inspired by the Merton model with p(Z) given by (3.1.5),
we have

P

[

Nm

m
≤ x

]

→ N

(

1√
ρ

(

√

1− ρN−1(x)−N−1 (p̄)
)

)

as m → ∞ (3.2.2)

where the right hand side in (3.2.2) thus is the LPA distribution in the mixed binomial Merton
model.
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