FORMULA SHEET FOR FINANCIAL RISK
ALLOWED TO BE USED ON THE EXAM

1. EXTREME VALUE STATISTICS

Generalized Pareto cumulative distribution function:

1—(1+2z)"Y7 for x>0, ify; >0

H(z)=<e = for x>0, ify; =0
1—(1—}—%3@)_1/” for > 0and x<—%, it v, <0

Generalized Extreme Value cumulative distribution function:

exp{—(1+ 2(z —p))~'/7} for r=p—2, ify;>0
_xz—p

G(ZE) =qe ¢ “ if Vi = 0
exp{—(1+2(z—p)"/7} for az<p-— 2, ify; <0

Poisson process:
A counting process N (t) is a Poisson process if

e The numbers of events which occur in disjoint time intervals are mutually independent
e N(t+ s) — N(s) has a Poisson distribution for any s,t > 0, i.e.

k

A
P[N(s+t)— N(s)=k] = Fe_)‘t, for any s,t>0and k=0,1,2,...

Here A is the ”intensity parameter”. One interpretation is that A is the expected number of events
in any interval of length 1.

ML inference:
With [(0) denoting the log likelihood function, the expected and observed information matrices
are

0 0 0 0
1(0) = Eg(—————==—1(0 d 1(0) = (—=——=—1(¢
(0) = Bol—gg g 1) and 10) = (~ggze-1(0),
respectively. I(6) can be estimated by I(d) where 6 are the ML estimates of the parameters .
The ML estimate 6 = 64,...60; asymptotically has a mean zero multivariate normal distribution

with covariance matrix 1(6)~!.

Partition the parameter vector 6 into two parts, § = (61,62) and write 05 for the value of of 65
which maximises [(0) = (0, 02) over 0 for 6;. A Likelihood Ratio (LR) test then rejects the null
hypothesis that 6; takes the value 69 at the significance level « if

2(1(0) — 1(69,02)) > x2(d — p),

where x2(d — p) is the 1 — a quantile of the y2-distribution with d — p degrees of freedom, where
p and d are the dimensions (=lengths) of the vectors 6 and 6, respectively.

Dependence and the extremal index:

The extremal index, 6 is obtained as 1/{asymptotic mean cluster length}. If Lq,Lo,... is a
stationary stochastic process with marginal cumulative distribution function F'(x) and extremal
index 6 and M,, = max{Lq, Lo, ..., L, then asymptotically

P[M, < z] = F(z)’™.
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2. VALUE-AT-RISK AND EXPECTED SHORTFALL

Definition of Value-at-Risk:
Given a loss L and a confidence level a € (0,1), the 100 x a% Value-at-Risk, denoted VaR,, (L)
is the a-quantile of the distribution function Ff(x) = P[L < z|, that is

VaRq (L) = Ff () @1)
where Ff~(z) is the generalized inverse of F(x). Hence, VaR, (L) is given by the smallest number
y such that the probability that the loss L exceeds y is no larger than 1 — «, that is

VaRe (L) =inf{y e R: P[L >y] <1-—a}
=inf{yecR:1-P[L<y]<1-—a}
=inf{y e R: Fr(y) > a}
where F(x) = P[L < z] is the distribution of L.

In the case when Fy (z) = P[L < z] is continuous, and thus strictly increasing (i.e. the loss L
is a continuous random variable), then F;~(z) will be the inverse function F; '(z), and we have

VaRa(L) = F; (o) @2)
which means that VaR, (L) is the solution z, to the equation
Fr(za) = a.

Definition of Expected shortfall: Given a loss L and a confidence level a € (0, 1), the 100 x a%
expected shortfall, denoted ES, (L) is defined as

1 1
BSa(L) = —— / VaRa (L)du

and if L is a continuous random variable one can show that

ESo(L) =E[L|L > VaR.(L)] = ! /OO xfr(x)dz

I-a aRq (L)

where fr, () is the density of the loss L.

Linearity of Value-at-Risk and Expected shortfall: Let L be a loss and let a > 0 and b € R
be constants. Then

VaRg (aL + b) = aVaR, (L) + b @3)
and
ESs(aL +b) = aES, (L) + b. @4)

The relations I3) and @I4]) are often useful in practical computations.

3. THE MIXED BINOMIAL MODEL

Let Z be a random variable on R and let p(z) : R + [0,1] be a function. Define the random
variable p(Z) € [0,1] with mean p, that is

E[p(Z)] = p. @1)
If Z is a continuous random variable with density fz(z) then

oo

Ewwn=/ p(2)f2(2)dz = P @2)

Let X1, X5,...X,, be identically distributed random variables such that X; = 1 if obligor ¢
defaults before time T" and X; = 0 otherwise. Furthermore, conditional on Z, the random variables
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X1, Xo,... X, are independent and each X; have default probability p(Z) so P[X; = 1| Z] = p(Z).
We then get that

PX; =1 =E[X;] =E[E[X; | Z]] = E[p(2)] = p
where the last equality is due to ([BLI]). Next, letting all losses be the same and constant given by,
say £, then the total credit loss in the portfolio at time T, called L,,, is

L, = iEXi = EiXi =/{N,, where N, = iXi
i=1 i=1 i=1

thus, N,, is the number of defaults in the portfolio up to time 7'. Since
P[L,, = k) =P [N, = k]
it is enough to study NV,,. Since the random variables X1, X5, ... X,, are conditionally independent,
given the outcome Z, we have
m _
P = k121 = () )20 - sz
Hence, we have
m
PN, =K =B[N, =12 = | (] )2/ - p2) @3)

which holds regardless if Z is a discrete or continuous random variable.
If Z is a continuous random variable on R with density fz(z) then

P, =i = [ (F)peH s et @)

3.1. Some examples of mixing distributions. Below we list three examples of mixing distri-
butions frequently used in the industry:

Example 1: A mixed binomial model with p(Z) = Z where Z is a beta distribution, Z ~
Beta(a,b) and by definition of a beta distribution it holds that P[0 < Z < 1] = 1 so that p(Z) €
[0,1]. We say that a random variable Z has beta distribution, Z ~ Beta(a,b), with parameters a
and b, if it’s density fz(z) is given by

fz(z) = B(a b)zafl(lfz)bfl a,b>0, 0<z<l1 @11

where
_ lza—l — b—1 ” =
B(a,b) _/O R @12)

Here T'(y) is the Gamma function defined as

D(y) = / tY=tetdt B113)
0
which satisfies the relation
Iy +1) =yl(y) B.14)
for any y. By using Equation (BI2) and BIL4) one can show that 5(a,b) satisfies the recursive

relation

Bla+1,b) = ai_i_bﬂ(a,b).

Example 2: Another possibility for mixing distribution p(Z) is to let p(Z) be a logit-normal
distribution. This means that
1

Z =
p(Z) 1+exp(—(u+02))
where 4 and o are constants with ¢ > 0 and Z is a standard normal. Note that p(Z) € [0, 1].




4 FORMULA SHEET FOR FINANCIAL RISK

Example 3: The mixed binomial model inspired by the Merton model with p(Z) given by

N-'(p) — \/pZ
p(Z)=N <—> 5
(2) = BT5)
where Z is a standard normal and N(x) is the distribution function of a standard normal distri-
bution. Furthermore, p € (0,1) and p = P[X; = 1]. Note that p(Z) € [0,1].

3.2. Large Portfolio Approximation (LPA) for mixed binomial models. The following
theorem is very useful when considering the loss distribution for a large credit portfolio, i.e. when
m is large.

Theorem 3.1. With notation as above, for any = € [0,1] it holds that
Nm
P[—Sx] —Pp(Z)<z] when m — co. B21)
m

The distribution P [p(Z) < x] is called the Large Portfolio Approximation (LPA) to the distribution
N,
of .

Hence, the above result implies that in a mixed binomial model, the distribution of the fractional

number of defaults N—";" in the portfolio converges to the distribution of the random variable p(Z)

as m — oo. Furthermore, if p(Z) has heavy tails, then the random variable % will also have

heavy tails, as m — oo, which then implies a strong default dependence in the credit portfolio.

Example: In the mixed binomial model inspired by the Merton model with p(Z) given by (BIL3),
we have N )
]P’{—mgx]%N<—( lelleﬁ)) as m — 0o 2
- N (1)~ N7 (7 @22)
where the right hand side in (B2[2]) thus is the LPA distribution in the mixed binomial Merton
model.
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