
Gudrun January 2005
326 MEuro loss
72 % due to forest losses  
4 times larger than second largest                         
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exceedance times Poisson process, excess losses have a  
Generalized Pareto (GP) distribution with distribution function

and the times and sizes are all mutually independent 

The choice of threshold an “art”, aided by graphics: parameter 
stability; median excess; goodness of fit; plots                                                     

windstorm losses
for Länsförsäkringar
1982 – 2005: excesses of
1.5 MSEK

The Peaks over Thresholds (PoT) method (Coles p. 74-91,
H&L p. 256-259)3000
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In order from 
Left to right:

density function of Generalized Pareto distribution

the  distribution has left endpoint  0 and right endpoint    

the distribution has  left endpoint  0 and right endpoint 

the distribution is “heavytailed” for            :  then, moments of order greater
than            are infinite/don’t exist, exactly as for the Extreme Value distribution  

The Generalized Pareto distribution



Assume the random variable  X  has d.f.  F  and let  u  be a (high) level
The distribution of exceedances then is the conditional distribution of  X-u
given that   X  is larger than  u,  i.e. it has d.f.

Mathematics similar to the one which motivated the Block Maxima Method 
shows  that  if              has a limit as the level                 then this limit must be a
GP distribution, and that the GP distribution is the only family of distributions
which is stable under a change of levels (as specified in the next exercise).

Exercise:  Show that if  F(x)  is a GP distribution, then also             is  a GP 
distribution, and express the parameters of              in terms of the parameters
of   F(x). h

The Generalized Pareto distribution

(and hence �𝐹𝐹𝑢𝑢(𝑥𝑥) = 1 − 𝐹𝐹𝑢𝑢 𝑥𝑥 = �𝐹𝐹(𝑥𝑥+𝑢𝑢)
�𝐹𝐹(𝑢𝑢) ).



The Poisson process

Model for times of occurrence of events which occur “randomly” in time, 
with a constant “intensity”, e.g radioactive decay, times when calls arrive to a 
telephone exchange, times when traffic accidents  occur  … (all during periods 
of stationarity)  

Can be mathematically described as a counting process  N(t) = #events in [0, t]

Mathematically, the counting process N(t)  is a Poisson process if

a) The numbers of events which occur in disjoint time intervals are 
mutually independent

b) N(s+t) – N(s)  has a Poisson distribution for any  s, t ≥ 0, i.e. 

is the “intensity” parameter.  One 
interpretation of it is that       is the 
expected number of events in any time
interval of length  1.

Sample path 
of a Poisson Process N(t)



A connection between the PoT and Block Maxima methods

Suppose the PoT model holds. Thus values larger than  u  occur according
to a Poisson process with intensity     , where this process is independent of the 
sizes of the exceedances, and these sizes are i.i.d. and have a GP distribution

Then

= EV distribution!



Tail and quantile estimation when underlying variables (e.g. 
daily wind damage claims) and not just big values (e.g. total 
loss in big windstorm ) are the data

Suppose we have observed the  (random) number  N(u)  of excesses of the level  
u  by             . Writing                               for the probability that an 
observation is larger than  x, the ratio N(u)/n is a natural estimator of           . 
Assume further that we have computed estimators            of the parameters           
in the GP distribution from  these           exceedances. Since

a natural estimator of  the “tail function”           , for  x>u, then is

Solving                        for        we  get an estimator of the  p-th quantile of  X:

(Why all this trouble? Why not just estimate            by  N(x)/n? Because if 
x  is a very high level then  N(x)  is very small or  zero, and then this estimator
is useless, and it is such very large  x-es we are interested in. )
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