

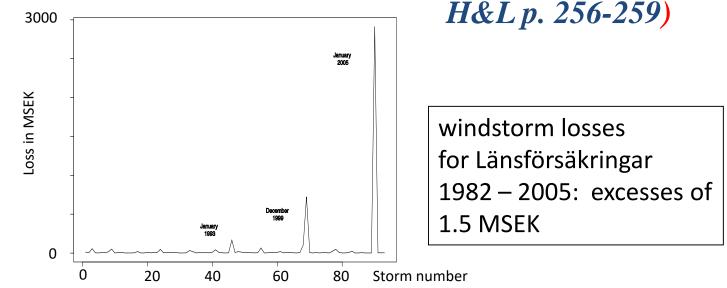
Financial Risk 4-rd quarter 2016/17 Tuesdays 13.15 – 115.00 and Thursdays 15.15 – 17.00 in Euler

Copyright © by Randy Glasbergen. www.glasbergen.com

"As an alternative to the traditional 30-year mortgage, we also offer an interest-only mortgage, balloon mortgage, reverse mortgage, upside down mortgage, inside out mortgage, loop-de-loop mortgage, and the spinning double axel mortgage with a triple lutz."

Gudrun January 2005 326 MEuro loss 72 % due to forest losses 4 times larger than second largest

The Peaks over Thresholds (PoT) method (Coles p. 74-91,



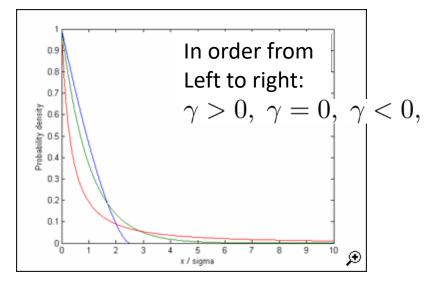
exceedance times Poisson process, excess losses have a Generalized Pareto (GP) distribution with distribution function

$$H(x) = 1 - \left(1 + \frac{\gamma}{\sigma}x\right)_{+}^{-1/\gamma} \quad (= 1 - e^{-x/\sigma} \text{ if } \gamma = 0),$$

and the times and sizes are all mutually independent

The choice of threshold an "art", aided by graphics: parameter stability; median excess; goodness of fit; plots

The Generalized Pareto distribution



density function of Generalized Pareto distribution

$$h(x) = \frac{d}{dx}H(x) = \frac{1}{\sigma} \left(1 + \frac{\gamma}{\sigma}x\right)_{+}^{-1/\gamma - 1} \quad (= \frac{1}{\sigma}e^{-x/\sigma} \text{ if } \gamma = 0)$$

 $\gamma \geq 0$ the distribution has left endpoint 0 and right endpoint ∞

 $\gamma < 0$ the distribution has left endpoint 0 and right endpoint $\sigma/|\gamma|$

the distribution is "heavytailed" for $\gamma > 0$: then, moments of order greater than $1/\gamma$ are infinite/don't exist, exactly as for the Extreme Value distribution

The Generalized Pareto distribution

Assume the random variable X has d.f. F and let u be a (high) level The distribution of exceedances then is the conditional distribution of X-u given that X is larger than u, *i.e.* it has d.f.

$$F_u(x) = P(X - u \le x | X > u) = \frac{P(X - u \le x \text{ and } X > u)}{P(X > u)} = \frac{F(x + u) - F(u)}{1 - F(u)}$$

(and hence $\overline{F}_u(x) = 1 - F_u(x) = \frac{\overline{F}(x + u)}{\overline{F}(u)}$).

Mathematics similar to the one which motivated the Block Maxima Method shows that if $F_u(x)$ has a limit as the level $u \to \infty$ then this limit must be a GP distribution, and that the GP distribution is the only family of distributions which is stable under a change of levels (as specified in the next exercise).

Exercise: Show that if F(x) is a GP distribution, then also $F_u(x)$ is a GP distribution, and express the parameters of $F_u(x)$ in terms of the parameters of F(x). h

The Poisson process

Model for times of occurrence of events which occur "randomly" in time, with a constant "intensity", e.g radioactive decay, times when calls arrive to a telephone exchange, times when traffic accidents occur ... (all during periods of stationarity)

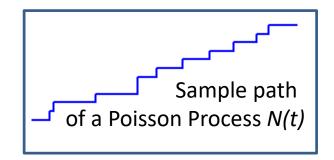
Can be mathematically described as a counting process N(t) = #events in [0, t]

Mathematically, the counting process N(t) is a Poisson process if

- a) The numbers of events which occur in disjoint time intervals are mutually independent
- b) N(s+t) N(s) has a Poisson distribution for any $s, t \ge 0, i.e.$

$$P(N(s+t) - N(s) = k) = \frac{(\lambda t)^k}{k!} e^{-\lambda t}$$
, for any $s, t \ge 0, k = 1, 2, ...$

 λ is the "intensity" parameter. One interpretation of it is that λ is the expected number of events in any time interval of length *1*.



A connection between the PoT and Block Maxima methods

Suppose the PoT model holds. Thus values larger than *u* occur according to a Poisson process with intensity λ , where this process is independent of the sizes of the exceedances, and these sizes are i.i.d. and have a GP distribution $H(x) = 1 - (1 + \frac{\gamma}{\sigma}x)_{+}^{-1/\gamma}$. Then $P(M_T \le u + x) = \sum_{n=1}^{\infty} P(M_T \le u + x, \text{ there are k exceedances in } [0, T])$ $= \sum_{k=1}^{\infty} H(x)^k \frac{(\lambda T)^k}{k!} \exp\{-\lambda T\}$ $= \sum_{k=0}^{\infty} (1 - (1 + \frac{\gamma}{\sigma}x)_{+}^{-1/\gamma})^{k} \frac{(\lambda T)^{k}}{k!} \exp\{-\lambda T\}$ $= \exp\{\left(1 - \left(1 + \frac{\gamma}{\sigma}x\right)_{+}^{-1/\gamma}\right)\lambda T\}\exp\{-\lambda T\}$ $= \exp\{-(1+\frac{\gamma}{\sigma}x)_{+}^{-1/\gamma}\lambda T\}$ $= \exp\{-(1+\gamma \frac{x-((\lambda T)^{\gamma}-1)\sigma/\gamma}{\sigma(\lambda T)^{\gamma}})_{+}^{-1/\gamma}\}$

Tail and quantile estimation when underlying variables (e.g. daily wind damage claims) and not just big values (e.g. total loss in big windstorm) are the data

Suppose we have observed the (random) number N(u) of excesses of the level u by $X_1, \ldots X_n$. Writing $\overline{F}(x) = 1 - F(x)$ for the probability that an observation is larger than x, the ratio N(u)/n is a natural estimator of $\overline{F}(u)$. Assume further that we have computed estimators $\hat{\sigma}, \hat{\gamma}$ of the parameters in the GP distribution from these σ, γ exceedances. Since

$$\bar{F}(x) = \bar{F}(u)\frac{\bar{F}(x)}{\bar{F}(u)} = \bar{F}(u)\bar{F}_u(x-u),$$

a natural estimator of the "tail function" $\overline{F}(x)$, for x>u, then is

$$\hat{\bar{F}}(x) = \frac{N(u)}{n} (1 + \hat{\gamma} \frac{x-u}{\hat{\sigma}})^{-1/\hat{\gamma}}.$$

Solving $\hat{\bar{F}}(x_p) = p$ for x_p we get an estimator of the *p*-th quantile of *X*: $\hat{x}_p = u + \frac{\hat{\sigma}}{\hat{\gamma}}((\frac{n}{N(u)}p)^{-\hat{\gamma}} - 1).$

(Why all this trouble? Why not just estimate $\overline{F}(x)$ by N(x)/n? Because if x is a very high level then N(x) is very small or zero, and then this estimator is useless, and it is such very large x-es we are interested in.)