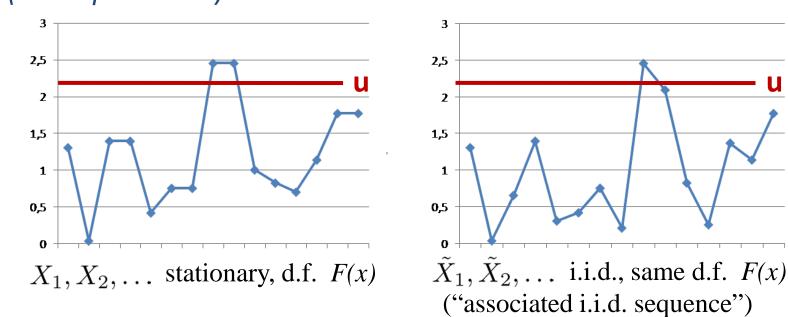


Financial Risk 4-rd quarter 2017/18

Copyright © by Randy Glasbergen. www.glasbergen.com




"As an alternative to the traditional 30-year mortgage, we also offer an interest-only mortgage, balloon mortgage, reverse mortgage, upside down mortgage, inside out mortgage, loop-de-loop mortgage, and the spinning double axel mortgage with a triple lutz."



Gudrun January 2005
326 MEuro loss
72 % due to forest losses
4 times larger than second largest

# **Dependence: Extreme Value Statistics for stationary time series** *(Coles p. 92-104)*



Dependence → extremes typically come in small "clusters"

 $\theta =$ "Extremal index" = 1/"asymptotic mean cluster length"

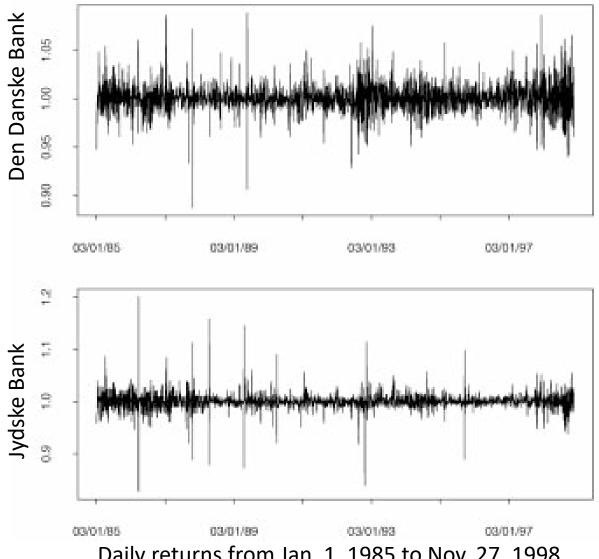
- typically  $P(M_n \le x) \approx F(x)^{\theta n}$  for n large
- typically clusters asymptotically i.i.d., dependence within clusters
- typically tail of cluster maxima asymptotically same as  $\bar{F}(x)$ !!
- typically the EV distributions the only possible limit distributions

## The block maxima method for stationary time series

If blocks are sufficiently long, then block maxima (typically) are approximately independent, and one can use Extreme Value Statistics in precisely the same way as for i.i.d. sequences

## The PoT method for stationary time series

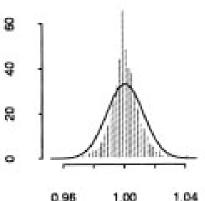
- 1. Decluster: identify approximately i.i.d clusters of large values by
  - a) Block method: divide observations up into blocks of a fixed length r, all values in a block which exceed the level u is a cluster
  - b) Blocks-runs method: the first cluster starts at first exceedance of u and contains all excesses of u within a fixed length r thereafter. The second cluster starts at the next exceedance of u and contains all excesses of u within r thereafter, and so on. . .
  - c) Runs method: the first cluster starts with the first exceedance of u and stops as soon as there is a value below u, the second cluster starts with the next exceedance of u, and so on ...
- 2.  $\hat{\theta} = \frac{\text{no. of clusters}}{\text{no. of exceedances}}$  estimate of the extremal index
- 3. **PoT:** Use standard i.i.d. PoT model, but with excesses replaced by cluster maxima, and excedance times replaced by the times when cluster maxima occur.
- 4. Use  $P(M_n \le x) \approx F(x)^{\theta n}$  to switch between block maxima and PoT


# Estimating value at risk by extreme value methods;

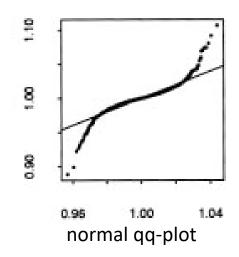
(Sarah Lauridsen, Extremes 3, 107-144, 2000)

## VaR = high quantiles of the loss-profits distribution

- empirical quantiles
- unconditional Gaussian method
- conditional Gaussian method
- GEV + different extremal index estimators
- GP pretending independence
- GP with declustering
- GARCH + GP residuals, conditional
- GARCH + GP residuals, unconditional


#### Compared, and evaluated via backtesting




Daily returns from Jan. 1, 1985 to Nov. 27, 1998

Synthetic portfolio of 50 MDKK Danske Bank + 50 MDKK Jydske Bank

#### **Empirical and Normal**



histogram with estimated normal density (13 left values and 10 right values not shown)



| VaR in mDKr estimated by Gaussian and empirical method |       |       |       |       |       |       |        |  |
|--------------------------------------------------------|-------|-------|-------|-------|-------|-------|--------|--|
| 1-day VaR                                              | 95%   | 96%   | 97%   | 98%   | 99%   | 99.9% | 99.99% |  |
| Gaussian method                                        | -1.93 | -2.05 | -2.21 | -2.42 | -2.75 | -3.67 | -4.42  |  |
| Empirical method                                       | -1.66 | -1.85 | -2.07 | -2.43 | -3.10 | -7.55 | _      |  |

To assume returns normally distributed and i.i.d.gives easy calulations, also for complex portfolios consisting of many financial instruments.

- -- but, distribution doesn't fit at all in the tails, and independence not OK
- -- the empirical method gives no estimates for extreme quantiles

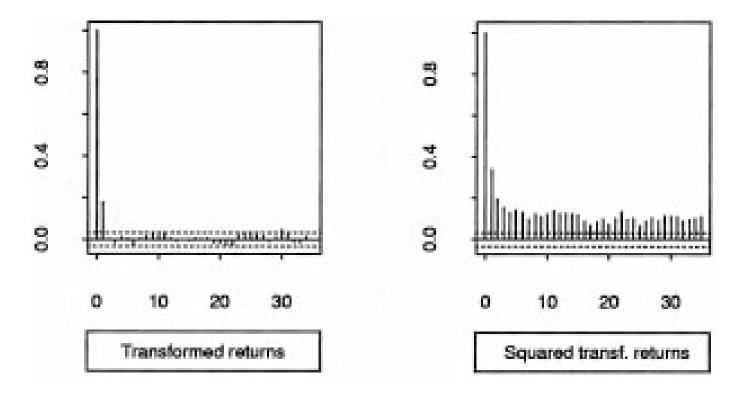
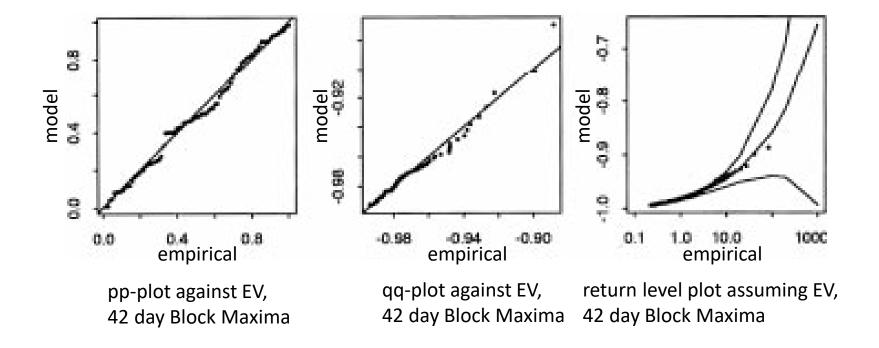




Figure 3. Auto correlograms for the seases of daily returns on the bank positions. The returns have been transformed to have Caussian marginals.

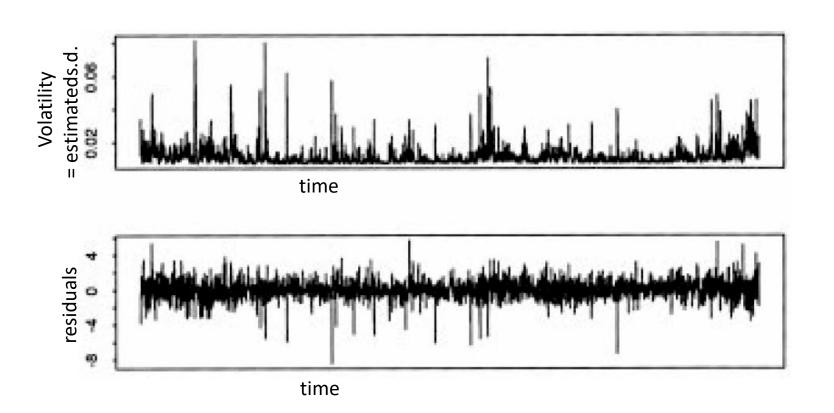
checked dependence by transforming to normal marginal distribution and computing correlations → clear and strong dependence

Block Maxima for 42 days approximately independent (figure not shown)

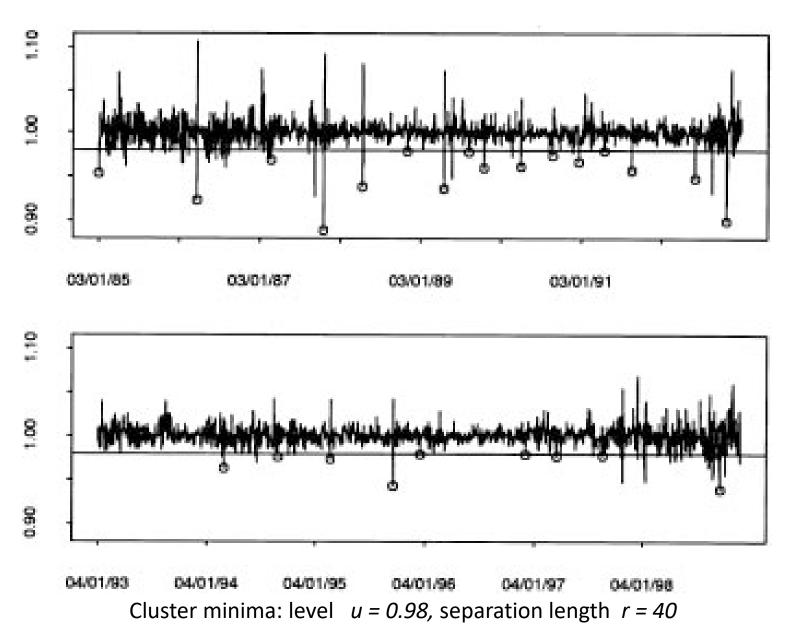
#### **Block Maxima**



EV distribution fits the data well, and 42 days maxima interesting for firm survival, but how can one get from there to overnight VaR?


 $\alpha^{n}\theta$  - quantile of overnight P&L-distribution may be roughly estimated by  $\alpha$  - quantile of n-day maxima

- but difficult to estimate  $\, heta$ 


#### Garch

fit Garch model to data, compute residuals, fit GP distribution to residuals, and compute quantiles of the resulting estimated distribution of returns (computation done by simulation).

- this can be done *conditionally*, using the present estimate of the volatility
  - -- for what happens with the portfolio tomorrow
- or *unconditionally* for longtime behavior of portfolio



**PoT** 



|           |             | Backtesting   | results, violati<br>Empirical me |               | VaR       |          |         |
|-----------|-------------|---------------|----------------------------------|---------------|-----------|----------|---------|
|           | 95%         | 96%           | 97%                              | 98%           | 99%       | 99.9%    | 99.99%  |
| Portfolio | 119 (99.3)  | 100 (79.4)    | 74 (59.6)                        | 56 (39.7)     | 30 (19.9) | 1(2.0)   | - (0.2  |
| S&P 500   | 101 (159.9) | 77 (127.9)    | 55 (95.9)                        | 35 (64.0)     | 20 (32.0) | 3 (3.2)  | - (0.3  |
| B&O       | 90 (99.3)   | 72 (79.4)     | 53 (59.6)                        | 35 (39.7)     | 19 (19.9) | 0(2.0)   | -(0.2)  |
| Carlsberg | 81 (99.3)   | 68 (79.4)     | 56 (59.6)                        | 39 (39.7)     | 17 (19.9) | 0(2.0)   | -(0.2)  |
| DS 1912   | 117 (99.3)  | 93 (79.4)     | 73 (59.6)                        | 52 (39.7)     | 27 (19.9) | 3 (2.0)  | -(0.2)  |
| ISS       | 148 (99.3)  | 126 (79.4)    | 93 (59.6)                        | 63 (39.7)     | 23 (19.9) | 1(2.0)   | - (0.2  |
| Novo B    | 113 (99.3)  | 90 (79.4)     | 70 (59.6)                        | 49 (39.7)     | 26 (19.9) | 2(2.0)   | - (0.2  |
| Svendborg | 122 (99.3)  | 96 (79.4)     | 77 (59.6)                        | 55 (39.7)     | 30 (19.9) | 4 (2.0)  | - (0.2  |
|           |             | Uncon         | nditional Gaus                   | sian method   |           |          |         |
|           | 95%         | 96%           | 97%                              | 98%           | 99%       | 99.9%    | 99.99%  |
| Portfolio | 76 (99.3)   | 66 (79.4)     | 62 (59.6)                        | 47 (39.7)     | 30 (19.9) | 16 (2.0) | 10 (0.2 |
| S&P 500   | 101 (159.9) | 79 (127.9)    | 59 (95.9)                        | 36 (64.0)     | 22 (32.0) | 5 (3.2)  | 3 (0.3  |
| B&O       | 61 (99.3)   | 56 (79.4)     | 49 (59.6)                        | 40 (39.7)     | 28 (19.9) | 13 (2.0) | 9 (0.2  |
| Carlsberg | 63 (99.3)   | 55 (79.4)     | 48 (59.6)                        | 39 (39.7)     | 27 (19.9) | 11 (2.0) | 5 (0.2  |
| DS 1912   | 105 (99.3)  | 95 (79.4)     | 85 (59.6)                        | 67 (39.7)     | 48 (19.9) | 19 (2.0) | 8 (0.2  |
| ISS       | 81 (99.3)   | 67 (79.4)     | 57 (59.6)                        | 41 (39.7)     | 29 (19.9) | 19 (2.0) | 11 (0.2 |
| Novo B    | 88 (99.3)   | 72 (79.4)     | 61 (59.6)                        | 54 (39.7)     | 41 (19.9) | 16 (2.0) | 7 (0.2  |
| Svendborg | 108 (99.3)  | 98 (79.4)     | 84 (59.6)                        | 73 (39.7)     | 57 (19.9) | 22 (2.0) | 9 (0.2  |
|           |             | (             | Conditional Ga                   | ussian        |           |          |         |
|           | 95%         | 96%           | 97%                              | 98%           | 99%       | 99.9%    | 99.99%  |
| Portfolio | 77 (99.3)   | 64 (79.4)     | 51 (59.6)                        | 41 (39.7)     | 27 (19.9) | 10(2.0)  | 6 (0.2  |
| S&P 500   | 151 (159.9) | 127 (127.9)   | 88 (95.9)                        | 61 (64.0)     | 33 (32.0) | 7 (3.2)  | 4 (0.3  |
| B&O       | 71 (99.3)   | 61 (79.4)     | 53 (59.6)                        | 42 (39.7)     | 27 (19.9) | 11(2.0)  | 7 (0.2  |
| Carlsberg | 60 (99.3)   | 53 (79.4)     | 44 (59.6)                        | 36 (39.7)     | 26 (19.9) | 11(2.0)  | 5 (0.2  |
| DS 1912   | 90 (99.3)   | 71 (79.4)     | 57 (59.6)                        | 45 (39.7)     | 23 (19.9) | 9 (2.0)  | 4 (0.2  |
| ISS       | 90 (98.2)   | 80 (78.6)     | 70 (58.9)                        | 53 (39.3)     | 37 (19.6) | 18 (2.0) | 14 (0.2 |
| Novo B    | 72 (99.3)   | 61 (79.4)     | 46 (59.6)                        | 37 (39.7)     | 24 (19.9) | 8 (2.0)  | 3 (0.2  |
| Svendborg | 97 (99.3)   | 87 (79.4)     | 72 (59.6)                        | 52 (39.7)     | 31 (19.9) | 10 (2.0) | 4 (0.2  |
|           |             | GEV and simpl | e blocks estin                   | ator (95% thr | eshold)   |          |         |
|           | 95%         | 96%           | 97%                              | 98%           | 99%       | 99.9%    | 99.99%  |
| Portfolio | 71 (99.3)   | 57 (79.4)     | 36 (59.6)                        | 19 (39.7)     | 11 (19.9) | 0 (2.0)  | 0 (0.2) |
| S&P       | 43 (159.9)  | 37 (127.9)    | 25 (95.9)                        | 15 (64.0)     | 8 (32.0)  | 2 (3.2)  | 1 (0.3) |
| B&O       | 54 (99.3)   | 46 (79.4)     | 34 (59.6)                        | 23 (39.7)     | 8 (19.9)  | 0 (2.0)  | 0 (0.2) |
| Carlsberg | 40 (99.3)   | 33 (79.4)     | 24 (59.6)                        | 16 (39.7)     | 7 (19.9)  | 0 (2.0)  | 0 (0.2) |
| DS 1912   | 66 (99.3)   | 55 (79.4)     | 44 (59.6)                        | 28 (39.7)     | 14 (19.9) | 1(2.0)   | 0 (0.2) |
| ISS       | 79 (99.1)   | 60 (79.3)     | 36 (59.5)                        | 20 (39.6)     | 11 (19.8) | 0 (2.0)  | 0 (0.2) |
| Novo B    | 62 (99.3)   | 54 (79.4)     | 40 (59.6)                        | 26 (39.7)     | 11 (19.9) | 1 (2.0)  | 0 (0.2) |
| Svendborg | 77 (99.3)   | 67 (79.4)     | 54 (59.6)                        | 34 (39.7)     | 12 (19.9) | 1(2.0)   | 0 (0.2) |

## **Backtesting**

- compute VaR from the first six years of data, see if it "is violated", i.e. if next days return is lower than VaR, repeat again using six years of data but starting one day later, two days later, ... count number of violations
- expected no. of violations in parentheses

|           |            | Backtesting<br>GEV and simpl | results, violatio<br>e blocks estima | •             |           |         |         |
|-----------|------------|------------------------------|--------------------------------------|---------------|-----------|---------|---------|
|           | 95%        | 96%                          | 97%                                  | 98%           | 99%       | 99.9%   | 99.99%  |
| Portfolio | 140 (99.3) | 106 (79.4)                   | 78 (59.6)                            | 56 (39.7)     | 17 (19.9) | 1(2.0)  | 0 (0.2) |
| S&P500    | 79 (159.9) | 56 (127.9)                   | 36 (95.9)                            | 25 (64.0)     | 13 (32.0) | 2 (3.2) | 2 (0.3) |
| B&O       | 80 (99.3)  | 63 (79.4)                    | 51 (59.6)                            | 38 (39.7)     | 15 (19.9) | 0(2.0)  | 0 (0.2) |
| Carlsberg | 80 (99.3)  | 70 (79.4)                    | 51 (59.6)                            | 33 (39.7)     | 16 (19.9) | 0(2.0)  | 0 (0.2) |
| DS 1912   | 108 (99.3) | 94 (79.4)                    | 75 (59.6)                            | 48 (39.7)     | 23 (19.9) | 4(2.0)  | 0 (0.2) |
| ISS       | 157 (99.1) | 129 (79.3)                   | 97 (59.5)                            | 61 (39.6)     | 23 (19.8) | 2(2.0)  | 0 (0.2) |
| Novo B    | 115 (99.3) | 93 (79.4)                    | 71 (59.6)                            | 49 (39.7)     | 25 (19.9) | 2(2.0)  | 0 (0.2) |
| Svendborg | 125 (99.3) | 106 (79.4)                   | 82 (59.6)                            | 60 (39.7)     | 26 (19.9) | 3 (2.0) | 0 (0.2) |
|           |            | GEV and bl                   | ocks estimator                       | (95% threshol | d)        |         |         |
|           | 95%        | 96%                          | 97%                                  | 98%           | 99%       | 99.9%   | 99.99%  |
| Portfolio | 139 (99.3) | 107 (79.4)                   | 78 (59.6)                            | 54 (39.7)     | 18 (19.9) | 1(2.0)  | 0 (0.2) |
| S&P500    | 97 (159.9) | 75 (127.9)                   | 57 (95.9)                            | 34 (64.0)     | 15 (32.0) | 3 (3.2) | 2 (0.3) |
| B&O       | 89 (99.3)  | 73 (79.4)                    | 58 (59.6)                            | 44 (39.7)     | 17 (19.9) | 1(2.0)  | 0 (0.2) |
| Carlsberg | 77 (99.3)  | 65 (79.4)                    | 46 (59.6)                            | 33 (39.7)     | 14 (19.9) | 0(2.0)  | 0 (0.2) |
| DS 1912   | 112 (99.3) | 90 (79.4)                    | 70 (59.6)                            | 49 (39.7)     | 21 (19.9) | 3 (2.0) | 0 (0.2) |
| ISS       | 147 (99.1) | 129 (79.3)                   | 94 (59.5)                            | 46 (39.6)     | 20 (19.8) | 1(2.0)  | 0 (0.2) |
| Novo B    | 109 (99.3) | 88 (79.4)                    | 65 (59.6)                            | 45 (39.7)     | 21 (19.9) | 2(2.0)  | 0 (0.2) |
| Svendborg | 118 (99.3) | 100 (79.4)                   | 80 (59.6)                            | 58 (39.7)     | 29 (19.9) | 2 (2.0) | 0 (0.2) |
|           |            | GEV and bl                   | ocks estimator                       | (99% threshol | d)        |         |         |
|           | 95%        | 96%                          | 97%                                  | 98%           | 99%       | 99.9%   | 99.99%  |
| Portfolio | 166 (99.3) | 133 (79.4)                   | 99 (59.6)                            | 62 (39.7)     | 23 (19.9) | 1(2.0)  | 0 (0.2) |
| S&P500    | 88 (159.9) | 66 (127.9)                   | 45 (95.9)                            | 31 (64.0)     | 14 (32.0) | 3 (3.2) | 2 (0.3) |
| B&O       | 86 (99.3)  | 75 (79.4)                    | 59 (59.6)                            | 45 (39.7)     | 18 (19.9) | 1(2.0)  | 0 (0.2) |
| Carlsberg | 102 (99.3) | 78 (79.4)                    | 61 (59.6)                            | 42 (39.7)     | 20 (19.9) | 0(2.0)  | 0 (0.2) |
| DS 1912   | 126 (99.3) | 104 (79.4)                   | 87 (59.6)                            | 55 (39.7)     | 27 (19.9) | 5 (2.0) | 1 (0.2) |
| ISS       | 187 (99.1) | 156 (79.3)                   | 114 (59.5)                           | 75 (39.6)     | 27 (19.8) | 2(2.0)  | 0 (0.2) |
| Novo B    | 133 (99.3) | 109 (79.4)                   | 81 (59.6)                            | 58 (39.7)     | 30 (19.9) | 4 (2.0) | 0 (0.2) |
| Svendborg | 144 (99.3) | 121 (79.4)                   | 99 (59.6)                            |               |           |         |         |
|           |            |                              | GPD                                  |               |           |         |         |
|           | 95%        | 96%                          | 97%                                  | 98%           | 99%       | 99.9%   | 99.99%  |
| Portfolio | 118 (99.3) | 98 (79.4)                    | 78 (59.6)                            | 57 (39.7)     | 20 (19.9) | 1(2.0)  | 0 (0.2) |
| S&P500    | 26 (20.8)  | 26 (16.6)                    | 21 (12.5)                            | 16 (8.32)     | 5 (4.1)   | 2 (0.4) | 1 (0.04 |
| B&O       | 89 (98.9)  | 74 (79.1)                    | 54 (59.3)                            | 38 (39.5)     | 16 (19.8) | 2(2.0)  | 0 (0.2) |
| Carlsberg | 69 (95.6)  | 56 (76.8)                    | 46 (57.6)                            | 33 (38.4)     | 16 (19.2) | 1 (2.0) | 0 (0.2) |
| DS 1912   | 98 (74.3)  | 76 (59.4)                    | 65 (44.6)                            | 41 (29.7)     | 24 (14.9) | 4 (1.5) | 1 (0.1) |
| ISS       | 151 (99.3) | 128 (79.4)                   | 95 (59.6)                            | 61 (39.7)     | 26 (19.9) | 3 (2.0) | 0 (0.2) |
| Novo B    | 116 (99.2) | 89 (79.4)                    | 70 (59.5)                            | 50 (39.7)     | 27 (19.8) | 4(2.0)  | 1 (0.2) |
| Svendborg | 110 (88.9) | 96 (71.1)                    | 68 (53.3)                            | 52 (35.5)     | 25 (17.8) | 4 (1.8) | 0(0.2)  |

## **Backtesting**

- compute VaR from the first six years of data, see if it "is violated", i.e. if next days return is lower than VaR, repeat again using six years of data but starting one day later, two days later, ... count number of violations
- expected no. of violations in parentheses

|           |             | Backtesting   | results, violat | ions of 1-day | VaR         |         |         |
|-----------|-------------|---------------|-----------------|---------------|-------------|---------|---------|
|           |             | GARCH based   | extreme value   | e method, con | ditional    |         |         |
|           | 95%         | 96%           | 97%             | 98%           | 99%         | 99.9%   | 99.999  |
| Portfolio | 109 (99.3)  | 91 (79.4)     | 64 (59.6)       | 44 (39.7)     | 18 (19.9)   | 1(2.0)  | 0 (0.2) |
| S&P 500   | 145 (157.8) | 123 (126.2)   | 88 (94.7)       | 60 (63.1)     | 34 (31.6)   | 6 (3.2) | 2 (0.3) |
| B&O       | 95 (99.3)   | 73 (79.4)     | 53 (59.6)       | 33 (39.7)     | 12 (19.9)   | 2(2.0)  | 0 (0.2) |
| Carlsberg | 75 (99.3)   | 61 (79.4)     | 45 (59.6)       | 32 (39.7)     | 20 (19.9)   | 0(2.0)  | 0 (0.2) |
| DS 1912   | 94 (98.3)   | 66 (78.6)     | 48 (59.0)       | 26 (39.3)     | 11 (19.6)   | 2(2.0)  | 1 (0.2) |
| ISS       | 144 (98.2)  | 117 (78.5)    | 87 (58.9)       | 57 (39.3)     | 22 (19.6)   | 5 (2.0) | 0 (0.2) |
| Novo B    | 93 (99.3)   | 75 (79.4)     | 52 (59.6)       | 36 (39.7)     | 18 (19.9)   | 2(2.0)  | 0 (0.2) |
| Svendborg | 102 (99.3)  | 87 (79.4)     | 60 (59.6)       | 34 (39.7)     | 14 (19.9)   | 3 (2.0) | 1 (0.2) |
|           |             | GARCH based e | extreme value   | method, unco  | nditional   |         |         |
|           | 95%         | 96%           | 97%             | 98%           | 99%         | 99.9%   | 99.99%  |
| Portfolio | 107 (98.1)  | 90 (78.4)     | 66 (58.8)       | 44 (39.2)     | 16 (19.6)   | 0(2.0)  | 0 (0.2) |
| S&P500    | 98 (143.8)  | 77 (115.1)    | 55 (86.3)       | 30 (57.5)     | 14 (28.8.0) | 2 (2.9) | 0 (0.3) |
| B&O       | 82 (99.3)   | 65 (79.4)     | 52 (59.6)       | 34 (39.7)     | 14 (19.9)   | 0(2.0)  | 0 (0.2) |
| Carlsberg | 88 (98.8)   | 77 (79.0)     | 62 (59.3)       | 37 (39.5)     | 22 (19.8)   | 0(2.0)  | 0 (0.2) |
| DS 1912   | 108 (94.8)  | 87 (75.8)     | 69 (56.9)       | 43 (37.9)     | 20 (19.0)   | 1 (2.0) | 0 (0.2) |
| ISS       | 114 (81.7)  | 100 (65.3)    | 70 (49.0)       | 41 (32.7)     | 16 (16.3)   | 1 (1.6) | 0 (0.2) |

62 (59.5)

76 (59.1)

49 (39.7)

56 (39.4)

25 (19.8)

27 (19.7)

2(2.0)

2(2.0)

0(0.2)

0(0.2)

Novo B

Svendborg

106 (99.2)

115 (98.6)

87 (79.4)

100 (78.8)

## **Backtesting**

- compute VaR from the first six years of data, see if it "is violated", i.e. if next days return is lower than VaR, repeat again using six years of data but starting one day later, two days later, ... count number of violations
- expected no. of violations in parentheses