FORMULA SHEET FOR FINANCIAL RISK
ALLOWED TO BE USED ON THE EXAM

1. EXTREME VALUE STATISTICS

Generalized Pareto cumulative distribution function:
1—(1+2z)~Y7 for x>0, ify; >0
H(x)={1—-e> for = >0, ify; =0
1— (14 Xz)~7 for z>0and r<—2,if 9, <0

Generalized Extreme Value cumulative distribution function:

exp{—(l—!—g(x—,u))_l/”} for 2 >p—2, ify;>0

Glx)={e* ifv; =0
exp{—(1 + X(x — )"V} for oz < p— %, ify; <0

Poisson process:
A counting process N (t) is a Poisson process if

e The numbers of events which occur in disjoint time intervals are mutually independent
e N(t+ s) — N(s) has a Poisson distribution for any s,t > 0, i.e.

k
IP’[N(s—i-t)—N(s):k]:(/\;) e ™ forany s,t>0andk=0,1,2,...

Here ) is the ”intensity parameter”. One interpretation is that A is the expected number of events
in any interval of length 1.

ML inference:
With £(6) denoting the log likelihood function, the expected and observed information matrices
are

0 0 0 0
7(0)= Ee(*%%l(e)) and I(0) = (786' 20,
A 7 ? J

16)),
respectively. Let 6y be the true parameters. Then Z(6y) can be estimated by Z(6) or by I(6),
where 6 are the ML estimates of the parameters 6. The ML estimate = 61, . .. 6, asymptotically
has a mean zero multivariate normal distribution with covariance matrix Z(6y) .

Partition the parameter vector 6 into two parts, § = (61,62) and write 05 for the value of of 65
which maximises [(f) = (1, 02) over 5 for 6;. A Likelihood Ratio (LR) test then rejects the null
hypothesis that 6; takes the value 69 at the significance level « if

2(1(0) — 167, 62)) > x2(d — p),

where X2 (d — p) is the 1 — a quantile of the x2-distribution with d — p degrees of freedom, where
p and d are the dimensions (=lengths) of the vectors 6 and 6s, respectively.

Dependence and the extremal index:

The extremal index, 6 is obtained as 1/{asymptotic mean cluster length}. If X7, X5,... is a
stationary stochastic process with marginal cumulative distribution function F'(x) and extremal
index § and M,, = max{X;, Xo,..., X, } then asymptotically

P[M, < z] = F(z)".
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2. VALUE-AT-RISK AND EXPECTED SHORTFALL

Definition of Value-at-Risk:
Given a loss L and a confidence level a € (0,1), the 100 x a% Value-at-Risk, denoted VaR,, (L)
is the a-quantile of the distribution function Fy,(z) = P[L < z], that is

VaRy (L) = Ff () (2.1)

where Ff~(z) is the generalized inverse of F,(z). Hence, VaR, (L) is given by the smallest number
y such that the probability that the loss L exceeds y is no larger than 1 — «, that is

VaRy (L) =inf{y e R: P[L >y] <1-—a}
=inf{yeR:1-P[L<y]<1-a}
=inf{y e R: Fr(y) > a}
where Fr(z) = P[L < z] is the distribution of L.

In the case when Fp(x) = P[L < z] is continuous and strictly increasing (i.e. the loss L is a
continuous random variable), then Ff~ () will be the inverse function F; *(z), and we have

VaR, (L) = F; *(a) (2.2)
which means that VaR, (L) is the solution z, to the equation

Fr(zy) = a.

Definition of Expected shortfall: Given a loss L and a confidence level o € (0, 1), the 100 x a%
expected shortfall, denoted ES, (L) is defined as
1 1
ESo(L) = —— | VaR,(L)du

T 1-a a

and if L is a continuous random variable one can show that

ESo(L) =E[L|L > VaR,(L)] = 1}@/ " xfr(z)dx
VaRqy

where fr(z) is the density of the loss L. In the special case where excesses over a threhold u
follows a GP distribution with parameters o, and VaR,, is greater than u then ES, is given by
the formula

o+ y(VaR, — u)

ES, = VaR, +
1—7

Linearity of Value-at-Risk and Expected shortfall: Let L be a loss and let a > 0 and b € R
be constants. Then

VaR, (aL + b) = aVaR, (L) + b (2.3)
and

ESq(aL +b) = aES, (L) + b. (2.4)

The relations (2.3) and (2.4) are often useful in practical computations.
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3. THE MIXED BINOMIAL MODEL

Let Z be a random variable on R and let p(z) : R — [0,1] be a function. Define the random
variable p(Z) € [0,1] with mean p, that is

E[p(Z)] = p. (3.1)
If Z is a continuous random variable with density fz(z) then
Bp(2) = [ ) ez =p, (32)

Let X1, X5,...X,, be identically distributed random variables such that X; = 1 if obligor i
defaults before time T' and X; = 0 otherwise. Furthermore, conditional on Z, the random variables
X1, Xo,... X,, are independent and each X; have default probability p(Z) so P[X; = 1| Z] = p(Z).
We then get that

PXi =1 =E[X;] =E[E[X; [ Z]] = E[p(2)] = p
where the last equality is due to (3.1). Next, letting all losses be the same and constant given by,
say ¢, then the total credit loss in the portfolio at time T, called L,,, is

m

L, = iexi ezm;Xi =/(N,, where N,, = in

i=1
thus, N,, is the number of defaults in the portfolio up to time T'. Since
P[L,, = kf] =P [N,, = k|
it is enough to study IV,,. Since the random variables X1, X5, ... X, are conditionally independent,
given the outcome Z, we have
m —
PN, = k1 2] = ()o@ (1 - pz))
Hence, we have

PINw =6 = BIP[N, =12 = | (] )(2) (0~ o) (33)

which holds regardless if Z is a discrete or continuous random variable.
If Z is a continuous random variable on R with density fz(z) then

0 fim .
P[N, = k| = / (k)p(z)k(l — p(2)"F f5(2)d=. (3.4)
3.1. Some examples of mixing distributions. Below we list three examples of mixing distri-
butions frequently used in the industry:

Example 1: A mixed binomial model with p(Z) = Z where Z is a beta distribution, Z ~
Beta(a,b) and by definition of a beta distribution it holds that P[0 < Z < 1] =1 so that p(Z) €
[0,1]. We say that a random variable Z has beta distribution, Z ~ Beta(a,b), with parameters a
and b, if it’s density fz(z) is given by

1 a—1 b—1
= 1-—- 1 1.1
fz(2) ﬂ(mb)z (1-2) a,b>0, 0<z< (3.1.1)
where )
_ _ T(a)L'(b)

b) = a=lq _ No=lg, — 227 1.2
Bat) = [ =t tas = p (312)

Here I'(y) is the Gamma function defined as
I'(y) = / tv=le~tat (3.1.3)

0

which satisfies the relation
Ly +1) =yI'(y) (3.1.4)
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for any y. By using Equation (3.1.2) and (3.1.4) one can show that $(a,b) satisfies the recursive
relation

Bla+1,b) = B(a,b).

a
a+b
Example 2: Another possibility for mixing distribution p(Z) is to let p(Z) be a logit-normal
distribution. This means that

1

Z =
p(2) l+exp(—(n+02))
where p and o are constants with ¢ > 0 and Z is a standard normal. Note that p(Z) € [0, 1].

Example 3: The mixed binomial model inspired by the Merton model with p(Z) given by

N=Y(p) - /pZ

p(Z) = N (M) (3.1.5)
vi—p

where Z is a standard normal and N(x) is the distribution function of a standard normal distri-

bution. Furthermore, p € (0,1) and p = P[X; = 1]. Note that p(Z) € [0,1].

3.2. Large Portfolio Approximation (LPA) for mixed binomial models. The following
theorem is very useful when considering the loss distribution for a large credit portfolio, i.e. when
m is large.

Theorem 3.1. With notation as above, for any x € [0,1] it holds that
Nom
P [ < x] —=Pp(Z)<z] when m — . (3.2.1)
m

The distribution P [p(Z) < x| is called the Large Portfolio Approzimation (LPA) to the distribution
N
Of # .

Hence, the above result implies that in a mixed binomial model, the distribution of the fractional
number of defaults 1\72? in the portfolio converges to the distribution of the random variable p(Z)
as m — oo. Furthermore, if p(Z) has heavy tails, then the random variable % will also have

heavy tails, as m — oo, which then implies a strong default dependence in the credit portfolio.

Example: In the mixed binomial model inspired by the Merton model with p(Z) given by (3.1.5),
we have N )
Pl <z —>N<< l—lex—Nlﬁ>> as m — 0o 3.2.2
T <a] v (5 (@)~ N () (322)
where the right hand side in (3.2.2) thus is the LPA distribution in the mixed binomial Merton
model.



