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ALLOWED TO BE USED ON THE EXAM

1. Extreme value statistics

Generalized Pareto cumulative distribution function:

H(x) =


1− (1 + γ

σx)−1/γ for x ≥ 0, if γj > 0

1− e− xσ for x ≥ 0, if γj = 0

1− (1 + γ
σx)−1/γ for x ≥ 0 and x < −σγ , if γj < 0

Generalized Extreme Value cumulative distribution function:

G(x) =


exp{−(1 + γ

σ (x− µ))−1/γ} for x ≥ µ− σ
γ , if γj > 0

e−e
− x−µ

σ if γj = 0

exp{−(1 + γ
σ (x− µ))−1/γ} for x < µ− σ

γ , if γj < 0

Poisson process:
A counting process N(t) is a Poisson process if

• The numbers of events which occur in disjoint time intervals are mutually independent
• N(t+ s)−N(s) has a Poisson distribution for any s, t ≥ 0, i.e.

P [N(s+ t)−N(s) = k] =
(λt)k

k!
e−λt, for any s, t ≥ 0 and k = 0, 1, 2, . . .

Here λ is the ”intensity parameter”. One interpretation is that λ is the expected number of events
in any interval of length 1.

ML inference:
With `(θ) denoting the log likelihood function, the expected and observed information matrices

are

I(θ) = Eθ(−
∂

∂θi

∂

∂θj
l(θ)) and I(θ) = (− ∂

∂θi

∂

∂θj
l(θ)),

respectively. Let θ0 be the true parameters. Then I(θ0) can be estimated by I(θ̂) or by I(θ̂),

where θ̂ are the ML estimates of the parameters θ. The ML estimate θ̂ = θ̂1, . . . θ̂d asymptotically
has a mean zero multivariate normal distribution with covariance matrix I(θ0)−1.

Partition the parameter vector θ into two parts, θ = (θ1, θ2) and write θ∗2 for the value of of θ2
which maximises l(θ) = l(θ1, θ2) over θ2 for θ1. A Likelihood Ratio (LR) test then rejects the null
hypothesis that θ1 takes the value θ01 at the significance level α if

2(l(θ̂)− l(θ01, θ̂2)) > χ2
α(d− p),

where χ2
α(d− p) is the 1− α quantile of the χ2-distribution with d− p degrees of freedom, where

p and d are the dimensions (=lengths) of the vectors θ and θ2, respectively.

Dependence and the extremal index:
The extremal index, θ is obtained as 1/{asymptotic mean cluster length}. If X1, X2, . . . is a

stationary stochastic process with marginal cumulative distribution function F (x) and extremal
index θ and Mn = max{X1, X2, . . . , Xn} then asymptotically

P [Mn ≤ x] = F (x)θn.
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2. Value-at-Risk and expected shortfall

Definition of Value-at-Risk:
Given a loss L and a confidence level α ∈ (0, 1), the 100×α% Value-at-Risk, denoted VaRα(L)

is the α-quantile of the distribution function FL(x) = P [L ≤ x], that is

VaRα(L) = F←L (α) (2.1)

where F←L (x) is the generalized inverse of FL(x). Hence, VaRα(L) is given by the smallest number
y such that the probability that the loss L exceeds y is no larger than 1− α, that is

VaRα(L) = inf {y ∈ R : P [L > y] ≤ 1− α}
= inf {y ∈ R : 1− P [L ≤ y] ≤ 1− α}
= inf {y ∈ R : FL(y) ≥ α}

where FL(x) = P [L ≤ x] is the distribution of L.

In the case when FL(x) = P [L ≤ x] is continuous and strictly increasing (i.e. the loss L is a
continuous random variable), then F←L (x) will be the inverse function F−1L (x), and we have

VaRα(L) = F−1L (α) (2.2)

which means that VaRα(L) is the solution xα to the equation

FL(xα) = α.

Definition of Expected shortfall: Given a loss L and a confidence level α ∈ (0, 1), the 100×α%
expected shortfall, denoted ESα(L) is defined as

ESα(L) =
1

1− α

∫ 1

α

VaRu(L)du

and if L is a continuous random variable one can show that

ESα(L) = E [L |L ≥ VaRα(L)] =
1

1− α

∫ ∞
VaRα(L)

xfL(x)dx

where fL(x) is the density of the loss L. In the special case where excesses over a threhold u
follows a GP distribution with parameters σ, γ and VaRα is greater than u then ESα is given by
the formula

ESα = VaRα +
σ + γ(VaRα − u)

1− γ
.

Linearity of Value-at-Risk and Expected shortfall: Let L be a loss and let a > 0 and b ∈ R
be constants. Then

VaRα(aL+ b) = aVaRα(L) + b (2.3)

and

ESα(aL+ b) = aESα(L) + b. (2.4)

The relations (2.3) and (2.4) are often useful in practical computations.
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3. The mixed binomial model

Let Z be a random variable on R and let p(x) : R 7→ [0, 1] be a function. Define the random
variable p(Z) ∈ [0, 1] with mean p̄, that is

E [p(Z)] = p̄. (3.1)

If Z is a continuous random variable with density fZ(z) then

E [p(Z)] =

∫ ∞
−∞

p(z)fZ(z)dz = p̄. (3.2)

Let X1, X2, . . . Xm be identically distributed random variables such that Xi = 1 if obligor i
defaults before time T and Xi = 0 otherwise. Furthermore, conditional on Z, the random variables
X1, X2, . . . Xm are independent and each Xi have default probability p(Z) so P [Xi = 1 |Z] = p(Z).
We then get that

P [Xi = 1] = E [Xi] = E [E [Xi |Z]] = E [p(Z)] = p̄

where the last equality is due to (3.1). Next, letting all losses be the same and constant given by,
say `, then the total credit loss in the portfolio at time T , called Lm, is

Lm =

m∑
i=1

`Xi = `

m∑
i=1

Xi = `Nm where Nm =

m∑
i=1

Xi

thus, Nm is the number of defaults in the portfolio up to time T . Since

P [Lm = k`] = P [Nm = k]

it is enough to studyNm. Since the random variablesX1, X2, . . . Xm are conditionally independent,
given the outcome Z, we have

P [Nm = k |Z] =

(
m

k

)
p(Z)k(1− p(Z))m−k.

Hence, we have

P [Nm = k] = E [P [Nm = k |Z]] = E
[(
m

k

)
p(Z)k(1− p(Z))k

]
(3.3)

which holds regardless if Z is a discrete or continuous random variable.
If Z is a continuous random variable on R with density fZ(z) then

P [Nm = k] =

∫ ∞
−∞

(
m

k

)
p(z)k(1− p(z))m−kfZ(z)dz. (3.4)

3.1. Some examples of mixing distributions. Below we list three examples of mixing distri-
butions frequently used in the industry:

Example 1: A mixed binomial model with p(Z) = Z where Z is a beta distribution, Z ∼
Beta(a, b) and by definition of a beta distribution it holds that P [0 ≤ Z ≤ 1] = 1 so that p(Z) ∈
[0, 1]. We say that a random variable Z has beta distribution, Z ∼ Beta(a, b), with parameters a
and b, if it’s density fZ(z) is given by

fZ(z) =
1

β(a, b)
za−1(1− z)b−1 a, b > 0, 0 < z < 1 (3.1.1)

where

β(a, b) =

∫ 1

0

za−1(1− z)b−1dz =
Γ(a)Γ(b)

Γ(a+ b)
. (3.1.2)

Here Γ(y) is the Gamma function defined as

Γ(y) =

∫ ∞
0

ty−1e−tdt (3.1.3)

which satisfies the relation

Γ(y + 1) = yΓ(y) (3.1.4)
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for any y. By using Equation (3.1.2) and (3.1.4) one can show that β(a, b) satisfies the recursive
relation

β(a+ 1, b) =
a

a+ b
β(a, b).

Example 2: Another possibility for mixing distribution p(Z) is to let p(Z) be a logit-normal
distribution. This means that

p(Z) =
1

1 + exp (−(µ+ σZ))

where µ and σ are constants with σ > 0 and Z is a standard normal. Note that p(Z) ∈ [0, 1].

Example 3: The mixed binomial model inspired by the Merton model with p(Z) given by

p(Z) = N

(
N−1 (p̄)−√ρZ
√

1− ρ

)
(3.1.5)

where Z is a standard normal and N(x) is the distribution function of a standard normal distri-
bution. Furthermore, ρ ∈ (0, 1) and p̄ = P [Xi = 1]. Note that p(Z) ∈ [0, 1].

3.2. Large Portfolio Approximation (LPA) for mixed binomial models. The following
theorem is very useful when considering the loss distribution for a large credit portfolio, i.e. when
m is large.

Theorem 3.1. With notation as above, for any x ∈ [0, 1] it holds that

P
[
Nm
m
≤ x

]
→ P [p(Z) ≤ x] when m→∞. (3.2.1)

The distribution P [p(Z) ≤ x] is called the Large Portfolio Approximation (LPA) to the distribution
of Nmm .

Hence, the above result implies that in a mixed binomial model, the distribution of the fractional
number of defaults Nm

m in the portfolio converges to the distribution of the random variable p(Z)

as m → ∞. Furthermore, if p(Z) has heavy tails, then the random variable Nm
m will also have

heavy tails, as m→∞, which then implies a strong default dependence in the credit portfolio.

Example: In the mixed binomial model inspired by the Merton model with p(Z) given by (3.1.5),
we have

P
[
Nm
m
≤ x

]
→ N

(
1
√
ρ

(√
1− ρN−1(x)−N−1 (p̄)

))
as m→∞ (3.2.2)

where the right hand side in (3.2.2) thus is the LPA distribution in the mixed binomial Merton
model.


