FORMULA SHEET FOR FINANCIAL RISK ALLOWED TO BE USED ON THE EXAM

1. Extreme value statistics

Generalized Pareto cumulative distribution function:

$$H(x) = \begin{cases} 1 - (1 + \frac{\gamma}{\sigma}x)^{-1/\gamma} & \text{for } x \ge 0, & \text{if } \gamma_j > 0\\ 1 - e^{-\frac{x}{\sigma}} & \text{for } x \ge 0, & \text{if } \gamma_j = 0\\ 1 - (1 + \frac{\gamma}{\sigma}x)^{-1/\gamma} & \text{for } x \ge 0 \text{ and } x < -\frac{\sigma}{\gamma}, \text{ if } \gamma_j < 0 \end{cases}$$

Generalized Extreme Value cumulative distribution function:

$$G(x) = \begin{cases} \exp\{-(1+\frac{\gamma}{\sigma}(x-\mu))^{-1/\gamma}\} & \text{for } x \ge \mu - \frac{\sigma}{\gamma}, & \text{if } \gamma_j > 0\\ e^{-e^{-\frac{x-\mu}{\sigma}}} & \text{if } \gamma_j = 0\\ \exp\{-(1+\frac{\gamma}{\sigma}(x-\mu))^{-1/\gamma}\} & \text{for } x < \mu - \frac{\sigma}{\gamma}, & \text{if } \gamma_j < 0 \end{cases}$$

Poisson process:

A counting process N(t) is a Poisson process if

- The numbers of events which occur in disjoint time intervals are mutually independent
- N(t+s) N(s) has a Poisson distribution for any $s, t \ge 0$, i.e.

$$\mathbb{P}[N(s+t) - N(s) = k] = \frac{(\lambda t)^k}{k!} e^{-\lambda t}$$
, for any $s, t \ge 0$ and $k = 0, 1, 2, ...$

Here λ is the "intensity parameter". One interpretation is that λ is the expected number of events in any interval of length 1.

ML inference:

With $\ell(\theta)$ denoting the log likelihood function, the expected and observed information matrices are

$$\mathcal{I}(\theta) = E_{\theta}(-\frac{\partial}{\partial \theta_i} \frac{\partial}{\partial \theta_j} l(\theta)) \text{ and } I(\theta) = (-\frac{\partial}{\partial \theta_i} \frac{\partial}{\partial \theta_j} l(\theta)),$$

respectively. Let θ_0 be the true parameters. Then $\mathcal{I}(\theta_0)$ can be estimated by $\mathcal{I}(\hat{\theta})$ or by $I(\hat{\theta})$, where $\hat{\theta}$ are the ML estimates of the parameters θ . The ML estimate $\hat{\theta} = \hat{\theta}_1, \dots, \hat{\theta}_d$ asymptotically has a mean zero multivariate normal distribution with covariance matrix $\mathcal{I}(\theta_0)^{-1}$.

Partition the parameter vector θ into two parts, $\theta = (\theta_1, \theta_2)$ and write θ_2^* for the value of θ_2 which maximises $l(\theta) = l(\theta_1, \theta_2)$ over θ_2 for θ_1 . A Likelihood Ratio (LR) test then rejects the null hypothesis that θ_1 takes the value θ_1^0 at the significance level α if

$$2(l(\hat{\theta}) - l(\theta_1^0, \hat{\theta}_2)) > \chi_{\alpha}^2(d-p),$$

where $\chi^2_{\alpha}(d-p)$ is the $1-\alpha$ quantile of the χ^2 -distribution with d-p degrees of freedom, where p and d are the dimensions (=lengths) of the vectors θ and θ_2 , respectively.

Dependence and the extremal index:

The extremal index, θ is obtained as $1/\{\text{asymptotic mean cluster length}\}$. If X_1, X_2, \ldots is a stationary stochastic process with marginal cumulative distribution function F(x) and extremal index θ and $M_n = \max\{X_1, X_2, \ldots, X_n\}$ then asymptotically

$$\mathbb{P}\left[M_n \le x\right] = F(x)^{\theta n}$$

Definition of Value-at-Risk:

Given a loss L and a confidence level $\alpha \in (0, 1)$, the $100 \times \alpha\%$ Value-at-Risk, denoted VaR_{α}(L) is the α -quantile of the distribution function $F_L(x) = \mathbb{P}[L \leq x]$, that is

$$\operatorname{VaR}_{\alpha}(L) = F_{L}^{\leftarrow}(\alpha) \tag{2.1}$$

where $F_L^{\leftarrow}(x)$ is the generalized inverse of $F_L(x)$. Hence, $\operatorname{VaR}_{\alpha}(L)$ is given by the smallest number y such that the probability that the loss L exceeds y is no larger than $1 - \alpha$, that is

$$\begin{aligned} \operatorname{VaR}_{\alpha}(L) &= \inf \left\{ y \in \mathbb{R} : \mathbb{P}\left[L > y\right] \leq 1 - \alpha \right\} \\ &= \inf \left\{ y \in \mathbb{R} : 1 - \mathbb{P}\left[L \leq y\right] \leq 1 - \alpha \right\} \\ &= \inf \left\{ y \in \mathbb{R} : F_L(y) \geq \alpha \right\} \end{aligned}$$

where $F_L(x) = \mathbb{P}[L \leq x]$ is the distribution of L.

In the case when $F_L(x) = \mathbb{P}[L \le x]$ is continuous and strictly increasing (i.e. the loss L is a continuous random variable), then $F_L^{\leftarrow}(x)$ will be the inverse function $F_L^{-1}(x)$, and we have

$$\operatorname{VaR}_{\alpha}(L) = F_L^{-1}(\alpha) \tag{2.2}$$

which means that $\operatorname{VaR}_{\alpha}(L)$ is the solution x_{α} to the equation

$$F_L(x_\alpha) = \alpha.$$

Definition of Expected shortfall: Given a loss L and a confidence level $\alpha \in (0, 1)$, the $100 \times \alpha\%$ expected shortfall, denoted $\text{ES}_{\alpha}(L)$ is defined as

$$\operatorname{ES}_{\alpha}(L) = \frac{1}{1-\alpha} \int_{\alpha}^{1} \operatorname{VaR}_{u}(L) du$$

and if L is a continuous random variable one can show that

$$\mathrm{ES}_{\alpha}(L) = \mathbb{E}\left[L \mid L \ge \mathrm{VaR}_{\alpha}(L)\right] = \frac{1}{1 - \alpha} \int_{\mathrm{VaR}_{\alpha}(L)}^{\infty} x f_L(x) dx$$

where $f_L(x)$ is the density of the loss L. In the special case where excesses over a threhold u follows a GP distribution with parameters σ, γ and $\operatorname{VaR}_{\alpha}$ is greater than u then $\operatorname{ES}_{\alpha}$ is given by the formula

$$\mathrm{ES}_{\alpha} = \mathrm{VaR}_{\alpha} + \frac{\sigma + \gamma(\mathrm{VaR}_{\alpha} - u)}{1 - \gamma}.$$

Linearity of Value-at-Risk and Expected shortfall: Let L be a loss and let a > 0 and $b \in \mathbb{R}$ be constants. Then

$$\operatorname{VaR}_{\alpha}(aL+b) = a\operatorname{VaR}_{\alpha}(L) + b \tag{2.3}$$

and

$$\mathrm{ES}_{\alpha}(aL+b) = a\mathrm{ES}_{\alpha}(L) + b. \tag{2.4}$$

The relations (2.3) and (2.4) are often useful in practical computations.

3. The mixed binomial model

Let Z be a random variable on \mathbb{R} and let $p(x) : \mathbb{R} \mapsto [0,1]$ be a function. Define the random variable $p(Z) \in [0,1]$ with mean \bar{p} , that is

$$\mathbb{E}\left[p(Z)\right] = \bar{p}.\tag{3.1}$$

If Z is a continuous random variable with density $f_Z(z)$ then

$$\mathbb{E}\left[p(Z)\right] = \int_{-\infty}^{\infty} p(z) f_Z(z) dz = \bar{p}.$$
(3.2)

Let X_1, X_2, \ldots, X_m be identically distributed random variables such that $X_i = 1$ if obligor *i* defaults before time *T* and $X_i = 0$ otherwise. Furthermore, *conditional on Z*, the random variables X_1, X_2, \ldots, X_m are *independent* and each X_i have default probability p(Z) so $\mathbb{P}[X_i = 1 | Z] = p(Z)$. We then get that

$$\mathbb{P}[X_i = 1] = \mathbb{E}[X_i] = \mathbb{E}[\mathbb{E}[X_i \mid Z]] = \mathbb{E}[p(Z)] = \bar{p}$$

where the last equality is due to (3.1). Next, letting all losses be the same and constant given by, say ℓ , then the total credit loss in the portfolio at time T, called L_m , is

$$L_m = \sum_{i=1}^m \ell X_i = \ell \sum_{i=1}^m X_i = \ell N_m$$
 where $N_m = \sum_{i=1}^m X_i$

thus, N_m is the *number* of defaults in the portfolio up to time T. Since

$$\mathbb{P}\left[L_m = k\ell\right] = \mathbb{P}\left[N_m = k\right]$$

it is enough to study N_m . Since the random variables X_1, X_2, \ldots, X_m are conditionally independent, given the outcome Z, we have

$$\mathbb{P}[N_m = k \mid Z] = \binom{m}{k} p(Z)^k (1 - p(Z))^{m-k}$$

Hence, we have

$$\mathbb{P}[N_m = k] = \mathbb{E}\left[\mathbb{P}\left[N_m = k \mid Z\right]\right] = \mathbb{E}\left[\binom{m}{k}p(Z)^k(1 - p(Z))^k\right]$$
(3.3)

which holds regardless if Z is a discrete or continuous random variable.

If Z is a continuous random variable on \mathbb{R} with density $f_Z(z)$ then

$$\mathbb{P}[N_m = k] = \int_{-\infty}^{\infty} {m \choose k} p(z)^k (1 - p(z))^{m-k} f_Z(z) dz.$$
(3.4)

3.1. Some examples of mixing distributions. Below we list three examples of mixing distributions frequently used in the industry:

Example 1: A mixed binomial model with p(Z) = Z where Z is a beta distribution, $Z \sim \text{Beta}(a, b)$ and by definition of a beta distribution it holds that $\mathbb{P}[0 \leq Z \leq 1] = 1$ so that $p(Z) \in [0, 1]$. We say that a random variable Z has beta distribution, $Z \sim \text{Beta}(a, b)$, with parameters a and b, if it's density $f_Z(z)$ is given by

$$f_Z(z) = \frac{1}{\beta(a,b)} z^{a-1} (1-z)^{b-1} \quad a, b > 0, \quad 0 < z < 1$$
(3.1.1)

where

$$\beta(a,b) = \int_0^1 z^{a-1} (1-z)^{b-1} dz = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}.$$
(3.1.2)

Here $\Gamma(y)$ is the Gamma function defined as

$$\Gamma(y) = \int_0^\infty t^{y-1} e^{-t} dt$$
 (3.1.3)

which satisfies the relation

$$\Gamma(y+1) = y\Gamma(y) \tag{3.1.4}$$

for any y. By using Equation (3.1.2) and (3.1.4) one can show that $\beta(a, b)$ satisfies the recursive relation

$$\beta(a+1,b) = \frac{a}{a+b}\beta(a,b).$$

Example 2: Another possibility for mixing distribution p(Z) is to let p(Z) be a logit-normal distribution. This means that

$$p(Z) = \frac{1}{1 + \exp\left(-(\mu + \sigma Z)\right)}$$

where μ and σ are constants with $\sigma > 0$ and Z is a standard normal. Note that $p(Z) \in [0, 1]$.

Example 3: The mixed binomial model inspired by the Merton model with p(Z) given by

$$p(Z) = N\left(\frac{N^{-1}(\bar{p}) - \sqrt{\rho}Z}{\sqrt{1 - \rho}}\right)$$
(3.1.5)

where Z is a standard normal and N(x) is the distribution function of a standard normal distribution. Furthermore, $\rho \in (0, 1)$ and $\bar{p} = \mathbb{P}[X_i = 1]$. Note that $p(Z) \in [0, 1]$.

3.2. Large Portfolio Approximation (LPA) for mixed binomial models. The following theorem is very useful when considering the loss distribution for a large credit portfolio, i.e. when m is large.

Theorem 3.1. With notation as above, for any $x \in [0, 1]$ it holds that

$$\mathbb{P}\left[\frac{N_m}{m} \le x\right] \to \mathbb{P}\left[p(Z) \le x\right] \quad when \quad m \to \infty.$$
(3.2.1)

The distribution $\mathbb{P}[p(Z) \leq x]$ is called the Large Portfolio Approximation (LPA) to the distribution of $\frac{N_m}{m}$.

Hence, the above result implies that in a mixed binomial model, the distribution of the fractional number of defaults $\frac{N_m}{m}$ in the portfolio converges to the distribution of the random variable p(Z) as $m \to \infty$. Furthermore, if p(Z) has heavy tails, then the random variable $\frac{N_m}{m}$ will also have heavy tails, as $m \to \infty$, which then implies a strong default dependence in the credit portfolio.

Example: In the mixed binomial model inspired by the Merton model with p(Z) given by (3.1.5), we have

$$\mathbb{P}\left[\frac{N_m}{m} \le x\right] \to N\left(\frac{1}{\sqrt{\rho}}\left(\sqrt{1-\rho}N^{-1}(x) - N^{-1}(\bar{p})\right)\right) \quad \text{as } m \to \infty \tag{3.2.2}$$

where the right hand side in (3.2.2) thus is the LPA distribution in the mixed binomial Merton model.