

## Financial Risk 4-rd quarter 2018/19 Lecture 2

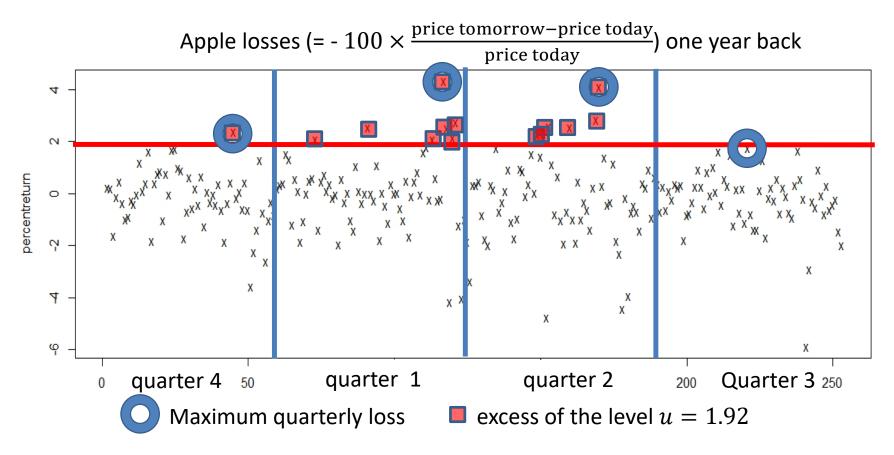
Copyright © by Randy Glasbergen. www.glasbergen.com



"As an alternative to the traditional 30-year mortgage, we also offer an interest-only mortgage, balloon mortgage, reverse mortgage, upside down mortgage, inside out mortgage, loop-de-loop mortgage, and the spinning double axel mortgage with a triple lutz."

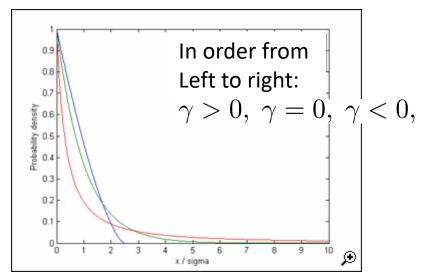


Gudrun January 2005 326 MEuro loss 72 % due to forest losses 4 times larger than second largest



How large is the risk of a big quarterly loss? BM How large is the risk of a big loss tomorrow? PoT

# The GP distribution: $H(x) = 1 - \left(1 + \frac{\gamma}{\sigma}x\right)_{+}^{-1/\gamma}$



density function of Generalized Pareto distribution

$$h(x) = \frac{d}{dx}H(x) = \frac{1}{\sigma}\left(1 + \frac{\gamma}{\sigma}x\right)_{+}^{-1/\gamma - 1} \quad (= \frac{1}{\sigma}e^{-x/\sigma} \text{ if } \gamma = 0)$$

 $\gamma \geq 0$  the distribution has left endpoint  ${\cal O}$  and right endpoint  $\infty$  $\gamma < 0$  the distribution has left endpoint  ${\cal O}$  and right endpoint  $\sigma/|\gamma|$ 

the distribution is "heavytailed" for  $\gamma > 0$ . Then moments of order greater than  $1/\gamma$  are infinite/don't exist, exactly as for the Generalized Extreme Value distribution

- Peaks over thresholds (PoT) method (Coles p. 74-91)
- Choose (high) threshold u and from i.i.d observations  $Y_1, \ldots, Y_n \sim F$  obtain N threshold excesses  $X_1 = Y_{t_1} u, \ldots, X_N = Y_{t_N} u$ , where  $t_1, \ldots, t_N$  are the times of threshold exceedance
- Assume X<sub>1</sub>, ..., X<sub>N</sub> are i.i.d and GP distributed and that t<sub>1</sub>, ..., t<sub>N</sub> are the occurrence times of an independent Poisson process, so that N has a Poisson distribution
- Use X<sub>1</sub>, ..., X<sub>n</sub> to estimate the GP parameters and N to estimate the mean of the Poisson distribution
- Estimate tail  $\overline{F}(x) = 1 F(x) = \overline{F}(u)\overline{F}_u(x-u)$ , where  $\overline{F}_u(x-u) = 1$ -the conditional distribution function of threshold excesses, by

$$\widehat{F}(x) = \frac{N}{n} \, \widehat{F}_u(x-u)$$

#### **Details:**

Assume the random variable X has d.f. F and let u be a (high) level. The distribution of exceedances then is the conditional distribution of X - u given that X is larger than u, *i.e.* it has d.f.

$$F_u(x) = P(X - u \le x | X > u) = \frac{P(X - u \le x \text{ and } X > u)}{P(X > u)} = \frac{F(x + u) - F(u)}{1 - F(u)}$$
  
(and hence  $\overline{F}_u(x) = 1 - F_u(x) = \frac{\overline{F}(x + u)}{\overline{F}(u)}$ ).

**Exercise:** Show that if F(x) is a GP distribution, then also  $F_u(x)$  is a GP distribution, and express the parameters of  $F_u(x)$  in terms of the parameters of F(x) (Treat  $\gamma \neq 0$  and  $\gamma = 0$  separately.)

## **More details**

N = the (random) number of exceedances of the threshold u by  $Y_1, \ldots, Y_n$ . The ratio N/n is a natural estimator of  $\overline{F}(u)$ . Assume we have computed estimators  $\hat{\sigma}, \hat{\gamma}$  of the parameters in the GP distribution  $\overline{F}_u(x) = H(x)$ . Since  $\overline{F}(x) = \overline{F}(u)\overline{F}_u(x-u)$ , a natural estimator of the "tail function"  $\overline{F}(x)$ , for x > u, then is

$$\widehat{\overline{F}}(x) = \frac{N}{n} \,\widehat{\overline{H}}(x-u) = \frac{N}{n} \left(1 + \frac{\widehat{\gamma}}{\widehat{\sigma}}(x-u)\right)^{-1/2}$$

Solving  $\widehat{F}(x_p) = p$  for  $x_p$  we get an estimator of the 1 - p-th quantile of X:

$$x_p = u + \frac{\hat{\sigma}}{\hat{\gamma}} \left( \left( \frac{n}{N} p \right)^{-\hat{\gamma}} - 1 \right)$$

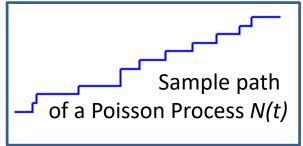
(Why all this trouble? Why not just estimate  $\overline{F}(x)$  by N(x)/n? Because if x is a very high level then N(x) is very small or zero, and then this estimator is useless -- and it is such very large x-es we are interested in.)

### **The Poisson process**

Model for times of occurrence of events which occur "randomly" in time, with a constant "intensity", e.g, radioactive decay, times when calls arrive to a telephone exchange, times when traffic accidents occur ... Can be mathematically described as a counting process N(t) =#events in [0, t]. The counting process N(t) is a Poisson process if

- a) The numbers of events which occur in disjoint time intervals are mutually independent
- b) N(s+t) N(s) has a Poisson distribution for any  $s, t \ge 0$ , *i.e.*  $P(N(s+t) - N(s) = k) = \frac{(\lambda t)^k}{k!}e^{-\lambda t}$ , for any  $s, t \ge 0, k = 1, 2, ...$

 $\lambda$  is the "intensity" parameter. It is the expected number of events in any time interval of length *1*.



#### A connection between the PoT and Block Maxima methods

Suppose the PoT model holds, so values larger than *u* occur as a Poisson process with intensity  $\lambda$ ; this process is independent of the sizes of the excesses; these are i.i.d. and have a GP distribution  $H(x) = 1 - (1 + \frac{\gamma}{\sigma}x)_{\perp}^{-1/\gamma}$ .  $M_T =$  the maximum in the time interval [1,*T*]. Then  $P(M_T \le u + x) = \sum P(M_T \le u + x, \text{ there are k exceedances in } [0, T])$ k=0 $= \sum_{k=1}^{\infty} H(x)^{k} \frac{(\lambda T)^{k}}{k!} \exp\{-\lambda T\}$  $= \sum_{k=1}^{\infty} (1 - (1 + \frac{\gamma}{\sigma}x)_{+}^{-1/\gamma})^{k} \frac{(\lambda T)^{k}}{k!} \exp\{-\lambda T\}$ k=0 $= \exp\{\left(1 - \left(1 + \frac{\gamma}{\sigma}x\right)_{+}^{-1/\gamma}\right)\lambda T\}\exp\{-\lambda T\}$  $= \exp\{-(1+\frac{\gamma}{\sigma}x)_{+}^{-1/\gamma}\lambda T\}$  $= \exp\{-(1+\gamma \frac{x-((\lambda T)^{\gamma}-1)\sigma/\gamma}{\sigma(\lambda T)^{\gamma}})_{+}^{-1/\gamma}\}$