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Probability, Statistics and Risk, MVE240

Computer exercise 5
Poisson Regression

Please write your names and "personal identi�cation numbers" here. During the exercise �ll
in the blanks marked by black bullets and answer the posed questions. To pass the exercise,
all questions should be answered and handed in to the computer exercise supervisor.

•

All necessary �les are downloadable from the course home page
http://www.math.chalmers.se/Stat/Grundutb/CTH/mve240/0809/�les/data.zip.
Please download the data.zip �le and uncompress it at the directory you plan to use for the
computer exercises.

When dealing with two or more variables, the functional relation between the variables is often
of interest. For count data, one model that is frequently used is the Poisson regression model
and applications are found in most sciences: technology, medicine etc. The Poisson regression
model is also implemented in many packages for statistical analysis of data.

In this computer exercise you will learn more about:

(1) The Poisson regression model and how to estimate the model parameters

(2) Model selection, i.e. the number of explanatory variables to use

(3) Con�dence intervals and the delta method

1 Preparatory exercises
1. Read the instructions for the computer exercise and chapter 7.1-7.3 and 8.3 in the book.

2. Try to explain the di�erence between linear regression and Poisson regression.

•

3. Solve exercise 8.7 in the book.

•
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2 Road accident data
The Swedish Road Administration is the national authority that has the overall responsibility
for the entire road transport system. One main issue is road safetybility and continuous work
to improve road safety is performed. From their internet site http://www.vv.se it is possible
to obtain a number of di�erent statistics about road accidents1. We will in this exercise use
tra�c accident data from years 1950-2004, given in Årsdata. 1950-2004.xls. The data is used
to �t a Poisson regression model to the number of people perished in tra�c accidents, cf.
Example 7.16 in the book. The estimated model is then used to predict the expected number
of perished year 2016.
You are welcome to use more recent data which includes the years 2005-2007. This can probably
be found at

http://www.vv.se/templates/page3wide____2118.aspx

Download the �le, open it and replace '1994*' by '1994'. Then save it in your personal matlab
directory. Finally import it to the Matlab workspace with the command

>> data = xlsread('arsdata_1950_2007_3.xls');
>> Nyear=2007;

Otherwise use the data from years 1950-2004

>> data = xlsread('Årsdata. 1950-2004.xls');
>> Nyear=2004;

The variable data now consists of 9 columns but we are only interested in columns {1, 2, 5, 6},
i.e. {year, number of people killed, number of cars, amount of sold petrol}. We store the data
in a structure array

>> traffic = struct('year',data(:,1),'killed',data(:,2),'cars',data(:,5),...
'petrol',data(:,6));

Plot the number of people killed each year

>> plot(traffic.year, traffic.killed, 'o')

Try also plotting the number of people killed vs. number of cars and the petrol consumption.
Do you se any connection?

From the plot it can be seen that the trend of increasing number of people killed is broken
around year 1965. And from year 1970 the number starts to decrease. Why did the number of
people killed increase in years 1950-1965? What was the reason for the brake of the increasing
trend? (Hint: right-side driving (1967), front seat-belts in new cars (1969), mandatory use of
front seat-belts (1975)).

1Another good source for all kinds of statistics about transport and communications is the Swedish Institute
For Transport and Communications Analysis, http://www.sika-institute.se/.
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Figure 1: The number of people killed per year in road accidents in Sweden from year 1950 to year
2004. (Source: The Swedish Road Administration.)

3 The Poisson regression model
Lets say we have a sequence of count data, ni, i = 1, . . . , k , for some event, i.e. the number
of perished in tra�c accidents in a year. This count data is assumed to be observations from
random variables Ni ∈ Po(µi), (called responses or dependent variables) with mean value
µi = µi(xi1, . . . , xip). The variables, xi1, . . . , xip, are called explanatory variables2 and are
assumed to measure factors that in�uence the count data.
We restrict µi to be a log-linear function3,

µi = exp(β0 + β1xi1 + . . . + βpxip) (1)

And thus the probability that Ni = n is,

P(Ni = n) =
e−µi(µi)n

n!
=

e−eβ0+β1xi1+...+βpxip (eβ0+β1xi1+...+βpxip)n

n!
, n = 0, 1, 2, . . . . (2)

3.1 Estimating model parameters β0, . . . , βp

To simplify the notation we introduce xi0 = 1 and can now write (??) as,

E[Ni] = µi = exp(
p∑

j=0

βjxij), (3)

where Ni ∈ Po(µi) for i = 1, . . . , k.
2Several other names exist in the literature: independent variables, regressor variables, predictor variables.
3Sometimes the model incorporates an extra term ti: µi = ti exp(β0 + β1xi1 + . . . + β2xip).
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The likelihood function is calculated as,

L(β) =
k∏

i=1

P(Ni = ni) =
k∏

i=1

µni
i

ni!
e−µi . (4)

where µi = µi(βp) is a function of βp = (β0, . . . , βp). The ML-estimates β∗p = (β∗0 , . . . , β∗p) are
the values of β that maximize the likelihood function L(β). Often it is easier to maximize the
log-likelihood function,

l(β) = −
k∑

i=1

log(ni!) +
k∑

i=1

ni log(µi)−
k∑

i=1

µi. (5)

By setting the �rst order derivates of the log-likelihood equal to zero, we get a system of (p+1)
non-linear equations in βj ,

∂l(β)
∂βj

=
k∑

i=1

∂µi

∂βj
(
ni

µi
− 1) =

k∑

i=1

(ni − µi)xij = 0, j = 0, . . . , p. (6)

Usually, the equation system must be solved with some numerical method, e.g. the Newton-
Raphson algorithm, cf. section 7.3.3. in the course book. This is also the method implemented
in the function poiss_regress. Use the command >> type poiss_regress to see the code.

4 Poisson regression of tra�c data
We will now try to �t the Poisson regression model to the tra�c data of the number of people
killed in road accidents. Above, we could see that there was a break in the trend of increasing
number people killed around year 1965-1975, mainly because of the improvement in car safety
due to the use of safety belts. Because of this it seems reasonable to �t our model to data
starting from year 1975. Why?

•

>> traffic = struct('year',data(26:end,1),'killed',data(26:end,2),...
'cars',data(26:end,5),'petrol',data(26:end,6));

Which are the explanatory variables? And the response?

•

Redraw the plot from above for the reduced data set

>> plot(traffic.year,traffic.killed,'o')
>> figure(1), hold on

We start the analysis with one explanatory variable, traffic.year. What is the variable year
supposed to measure?

•
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>> X1 = [traffic.year-mean(traffic.year)];
>> n = traffic.killed;
>> beta1 = poiss_regress(X1,n,1e-6);
>> my_fit = glmval(beta1, X1,'log');
>> plot(traffic.year, my_fit, 'b-')

What is your estimate of β? Convince yourself that this is the solution to (??). Judging from
the plot, is this model su�cient to describe the number of people killed in tra�c accidents?

•

Although this simple model seems to capture the overall trend, adding further explanatory
variables may improve the �t. Thus, we try adding the number of cars as a variable in our
model.

>> X2 = [traffic.year-mean(traffic.year), traffic.cars-mean(traffic.cars)];
>> beta2 = poiss_regress(X2,n,1e-6);
>> my_fit = glmval(beta2, X2,'log');
>> plot(traffic.year, my_fit, 'g-')

Have your estimates β∗0 and β∗1 changed? Does the number of cars improve the �t?

•

It seems reasonable also to add the quantity of sold petrol as this would re�ect the total mileage
of all cars4.

>> X3 = [traffic.year-mean(traffic.year), traffic.cars-mean(traffic.cars),...
traffic.petrol-mean(traffic.petrol)];

>> beta3 = poiss_regress(X3,n,1e-6);
>> my_fit = glmval(beta3, X3,'log');
>> plot(traffic.year, my_fit, 'r-')

Have your estimates of β changed now? Use the command format long to display more digits.
Which model do you choose?

•

Poisson regression model belongs to a class of models called generalized linear models. In a
generalized linear model (GLM), the mean of the response, µ, is modeled as a monotonic (non-
linear) transformation of a linear function of the explanatory variables, g(β0 + β1x1 + β2x2...).
The inverse of the transformation function g is called the � canonical link function�. In Poisson
regression this function is the log function, but in other GLM's di�erent link functions are used,
see doc glmfit for a list of supported link functions in the Matlab function glmfit5. Also,
the response may take di�erent distributions, such as the normal or the binomial distribution.

4Assuming that the mean fuel consumption of a car has been constant over the years - a 1970 year model
of a Volvo used about 10l per 100km which is approximately the same as for the 2000 year model. Of course,
the year 2000 model has more than twice the horsepower.

5glmfit uses a method called weighted least squares to compute the β estimates.
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4.1 Model selection - Deviance
It is not always easy to decide, just by looking at the plot, which model to choose. Even though
adding more variables improves the �t, it also increases the uncertainty of the estimates. One
method to choose complexity of the model is to use the deviance and a hypothesis test.
Let β∗p = {β∗0 , β∗1 , . . . , β∗p} be the ML-estimates of the model parameters {β0, β1, . . . , βp} of the
full model with p explanatory variables and β∗q the estimates of a simpler model where only
q (q < p) of the explanatory variables have been used. Then for large k, and under suitable
regularity conditions, the deviance

DEV = 2 · (l(β∗p)− l((β∗q))) (7)

is approximately χ2(p − q) distributed if the less complex model is true. Thus, it is possible
to test if the simpler model can be rejected compared to the full model. How? (use chi2inv
to get the quantiles of the χ2 distribution)

• χ2
α =

The deviance for model 3 compared to model 2 is calculated as

>> DEV2 = 2*traffic.killed'*([ones(length(traffic.killed),1),X3]*beta3-...
[ones(length(traffic.killed),1),X2]*beta2)

Is the improvement with model 3 signi�cant compared to model 2?

•

Repeat the test for model 2 against model 1 and also model 3 against model 1? Which model
do you choose?

5 Prediction
Now we want to use our model to predict the expected number of perished in tra�c accidents
ten years from now, i.e. year 2016 . In order to do this we �rst must have an estimate of the
number of cars that year. Start by plotting the number of cars vs. year,

>> figure(2)
>> plot(traffic.year, traffic.cars, 'o')
>> hold on

We will here use a simple linear model for the number of cars, yi, year xi

yi = β0 + β1 · xi + εi (8)

where the errors, εi ∈ N(0, (σε)2), are assumed to be independent and identically distributed.
This is called a linear regression model. It is possible to estimate the parameters with the
maximum likelihood method similar as for the Poisson regression model above. What is the
likelihood function?
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• L(β) =

In Matlab, the function regress computes the least-squares (LS) estimates of the linear re-
gression model. In the case of εi being normally distributed, the LS method is equivalent to
the ML method with exactly the same estimates.

>> phat = regress(traffic.cars,[ones(length(traffic.cars),1) [1975:Nyear]'])
>> plot(1975:2016, phat(1)+phat(2)*[1975:2016],'r')
>> cars_2016=phat(1)+phat(2)*2016;

Evaluate the �t by looking at the residuals.

>> res = traffic.cars-(phat(1)+phat(2)*traffic.year);
>> figure(3), plot(traffic.year,res,'o')
>> figure(4), normplot(res)

Do the residuals conform to the requirements of the model errors εi?

•

However, for our purpose this rough estimate of the number of cars year 2016 is su�cient. The
expected number of perished can now be predicted using (??),

>> x = [1 2016-mean(traffic.year) cars_2016-mean(traffic.cars) ]'
>> my_2016 = exp(beta2'*x) %----- Model 2 -----

Is the prediction reasonable? Is i possible to predict the number of perished for, say, year 2100?

•

5.1 Con�dence interval - Delta method
Under some regularity conditions, Theorem 4.4 in the course book gives that the ML-estimates,
β∗, are asymptotically multivariate normal distributed. Based on this and with the use of
Taylor expansion it can be shown that also the error distribution is asymptotically normal
with zero mean and variance equal to (σ∗ε )2,

E = µ(β)− µ(β∗) ∈ AsN(0, (σ∗ε)
2). (9)

Thus we can construct an interval that with approximately 1− α con�dence contains µ(β),

Iµ = [µ(β∗) + λ1−α/2 · σ∗ε , µ(β∗) + λα/2 · σ∗ε ] (10)

The standard deviation of the error, σ∗ε , can be computed using Gauss' formula,

(σ∗ε )
2 ≈ ∇µ(β∗)TΣ∗∇µ(β∗) = (

∂µ

∂β0
, . . . ,

∂µ

∂βd
)TΣ∗(

∂µ

∂β0
, . . . ,

∂µ

∂βd
) (11)

where Σ∗ = [(σ∗ij)
2] = [−l̈(β∗)]−1 is the covariance matrix of the estimated d + 1 model

parameters, i.e. (σ∗ij)
2 = Cov(β∗i , β∗j ) with 0 ≤ i, j ≤ d.

>> nabla = my_2016*x
>> sigma_star = covm(X2,beta2)
>> sd2 = nabla'*sigma_star*nabla
>> ci = [my_2016-1.64*sqrt(sd2) my_2016+1.64*sqrt(sd2)]
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What is the approximate con�dence of the interval?

• 1− α =

5.2 Optional: prediction interval
Note that in the previous subsection we derived an approximative con�dence interval for the
expected number µi = E[Ni] of persons killed in tra�c accidents year i, (i = 2016). Obviously
the actual number of killed in tra�c year i will be, with high probability, di�erent from the
expected number. In our model we assumed that Ni is Poisson distributed with mean µi.
However, since µi is surely bigger than 10 we can say that Ni ≈ N(µi, µi) or equivalently

Ni = µi + εi,

where εi ≈ N(0, µ∗i ), by means of the normal approximation of the Poisson distribution. Now
using (??) we can write that

Ni = µ∗i + E + εi,

and assume that E and εi are approximately independent and normally distributed, viz.

Ni ≈ N(µ∗i , (σ
∗
ε)

2 + µ∗i ). (12)

The prediction interval predicts the range of variability of the variable of interest in our case
Ni. Using (??) we can write down the approximative 1− α prediction interval

INi =
[
µ∗i + λ1−α/2 ·

√
(σ∗ε)2 + µ∗i , µ∗i − λα/2 ·

√
(σ∗ε)2 + µ∗i

]
. (13)

Compute the prediction interval for N2008

>> cars_2008=phat(1)+phat(2)*2008;
>> x = [1 2008-mean(traffic.year) cars_2008-mean(traffic.cars) ]'
>> my_2008 = exp(beta2'*x) %----- Model 2 -----
>> nabla = my_2008*x
>> sigma_star = covm(X2,beta2)
>> sd2 = nabla'*sigma_star*nabla
>> ci = [my_2008-1.64*sqrt(sd2+my_2008) my_2008+1.64*sqrt(sd2+my_2008)]

Does the observed value for year 2008 (approx 420) lie within the interval?

•

This is version 2009-01-17.


