Lecture 1

Last updated by Serik Sagitov: February 6, 2013

Abstract

A course based on the book Probabilities and Random Processes by Geoffrey Grimmett and David Stirzaker. Chapter 1. Events and their probabilities. Chapter 2. Random variables and their distributions.

1 Probability space

A random experiment is modeled in terms of a probability space $(\Omega, \mathcal{F}, \mathbb{P})$

- the sample space Ω is the set of all possible outcomes of the experiment,
- the σ-field (or sigma-algebra) \mathcal{F} is a collection of measurable subsets $A \subset \Omega$ (which are called random events) satisfying

1. $\emptyset \in \mathcal{F}$,
2. if $A_{i} \in \mathcal{F}, 0=1,2, \ldots$, then $\cup_{i=1}^{\infty} A_{i} \in \mathcal{F}$, countable unions,
3. if $A \in \mathcal{F}$, then $A^{c} \in \mathcal{F}$, complementary event,

- the probability measure \mathbb{P} is a function on \mathcal{F} satisfying three probability axioms

1. if $A \in \mathcal{F}$, then $\mathbb{P}(A) \geq 0$,
2. $\mathbb{P}(\Omega)=1$,
3. if $A_{i} \in \mathcal{F}, 0=1,2, \ldots$ are all disjoint, then $\mathbb{P}\left(\cup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} \mathbb{P}\left(A_{i}\right)$.

De Morgan's laws

$$
\left(\bigcap_{i} A_{i}\right)^{c}=\bigcup_{i} A_{i}^{c}, \quad\left(\bigcup_{i} A_{i}\right)^{c}=\bigcap_{i} A_{i}^{c} .
$$

Properties derived from the axioms

$$
\begin{aligned}
\mathbb{P}(\emptyset) & =0, \\
\mathbb{P}\left(A^{c}\right) & =1-\mathbb{P}(A), \\
\mathbb{P}(A \cup B) & =\mathbb{P}(A)+\mathbb{P}(B)-\mathbb{P}(A \cap B) .
\end{aligned}
$$

Inclusion-exclusion rule

$$
\begin{aligned}
& \mathbb{P}\left(A_{1} \cup \ldots \cup A_{n}\right)=\sum_{i} \mathbb{P}\left(A_{i}\right)-\sum_{i<j} \mathbb{P}\left(A_{i} \cap A_{j}\right)+\sum_{i<j<k} \mathbb{P}\left(A_{i} \cap A_{j} \cap A_{k}\right)-\ldots \\
&+(-1)^{n+1} \mathbb{P}\left(A_{1} \cap \ldots \cap A_{n}\right) .
\end{aligned}
$$

Continuity of the probability measure

- if $A_{1} \subset A_{2} \subset \ldots$ and $A=\cup_{i=1}^{\infty} A_{i}=\lim _{i \rightarrow \infty} A_{i}$, then $\mathbb{P}(A)=\lim _{i \rightarrow \infty} \mathbb{P}\left(A_{i}\right)$,
- if $B_{1} \supset B_{2} \supset \ldots$ and $B=\cap_{i=1}^{\infty} B_{i}=\lim _{i \rightarrow \infty} B_{i}$, then $\mathbb{P}(B)=\lim _{i \rightarrow \infty} \mathbb{P}\left(B_{i}\right)$.

2 Conditional probability and independence

If $\mathbb{P}(B)>0$, then the conditional probability of A given B is

$$
\mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}
$$

The law of total probability and the Bayes formula. Let B_{1}, \ldots, B_{n} be a partition of Ω, then

$$
\begin{aligned}
\mathbb{P}(A) & =\sum_{i=1}^{n} \mathbb{P}\left(A \mid B_{i}\right) \mathbb{P}\left(B_{i}\right), \\
\mathbb{P}\left(B_{j} \mid A\right) & =\frac{\mathbb{P}\left(A \mid B_{j}\right) \mathbb{P}\left(B_{j}\right)}{\sum_{i=1}^{n} \mathbb{P}\left(A \mid B_{i}\right) \mathbb{P}\left(B_{i}\right)} .
\end{aligned}
$$

Definition 1 Events A_{1}, \ldots, A_{n} are independent, if for any subset of events $\left(A_{i_{1}}, \ldots, A_{i_{k}}\right)$

$$
\mathbb{P}\left(A_{i_{1}} \cap \ldots \cap A_{i_{k}}\right)=\mathbb{P}\left(A_{i_{1}}\right) \ldots \mathbb{P}\left(A_{i_{k}}\right)
$$

Example 2 Pairwise independence does not imply independence of three events. Toss two coins and consider three events

- $A=\{$ heads on the first coin $\}$,
- $B=\{$ tails on the first coin $\}$,
- $C=\{$ one head and one tail $\}$.

Clearly, $\mathbb{P}(C \mid A)=\mathbb{P}(C)$ and $\mathbb{P}(C \mid B)=\mathbb{P}(C)$ but $\mathbb{P}(C \mid A \cap B)=0$.

3 Random variables

A real random variable is a measurable function $X: \Omega \rightarrow \mathbb{R}$ so that different outcomes $\omega \in \Omega$ can give different values $X(\omega)$. Measurability of $X(\omega)$:

$$
\{\omega: X(\omega) \leq x\} \in \mathcal{F} \text { for any real number } x
$$

Probability distribution $\mathbb{P}_{X}(B)=\mathbb{P}(X \in B)$ defines a new probability space $\left(R, \mathcal{B}, \mathbb{P}_{X}\right)$, where $\mathcal{B}=\sigma($ all open intervals) is the Borel sigma-algebra.

Definition 3 Distribution function (cumulative distribution function)

$$
F(x)=F_{X}(x)=\mathbb{P}_{X}\{(-\infty, x]\}=\mathbb{P}(X \leq x)
$$

In terms of the distribution function we get

$$
\begin{aligned}
\mathbb{P}(a<X \leq b) & =F(b)-F(a) \\
\mathbb{P}(X<x) & =F(x-) \\
\mathbb{P}(X=x) & =F(x)-F(x-) .
\end{aligned}
$$

Any monotone right-continuous function with

$$
\lim _{x \rightarrow-\infty} F(x)=0 \text { and } \lim _{x \rightarrow \infty} F(x)=1
$$

can be a distribution function.
Definition 4 The random variable X is called discrete, if for some countable set of possible values

$$
\mathbb{P}\left(X \in\left\{x_{1}, x_{2}, \ldots\right\}\right)=1
$$

Its distribution is described by the probability mass function $f(x)=\mathbb{P}(X=x)$.
The random variable X is called continuous, if its distribution has a probability density function $f(x)$:

$$
F(x)=\int_{-\infty}^{x} f(y) d y, \quad \text { for all } x
$$

so that $f(x)=F^{\prime}(x)$ almost everywhere.

Example 5 The indicator of a random event $I_{A}=1_{\{\omega \in A\}}$ with $p=\mathbb{P}(A)$ has a Bernoulli distribution $\operatorname{Ber}(p)$

$$
\mathbb{P}\left(I_{A}=1\right)=p, \quad \mathbb{P}\left(I_{A}=0\right)=1-p
$$

For several events $S_{n}=\sum_{i=1}^{n} I_{A_{i}}$ counts the number of events that occurred. If independent events A_{1}, A_{2}, \ldots have the same probability $p=\mathbb{P}\left(A_{i}\right)$, then S_{n} has a binomial distribution $\operatorname{Bin}(n, p)$

$$
\mathbb{P}\left(S_{n}=k\right)=\binom{n}{k} p^{k}(1-p)^{n-k}, \quad k=0,1, \ldots, n
$$

Example 6 (Cantor distribution) Consider $(\Omega, \mathcal{F}, \mathbb{P})$ with $\Omega=[0,1], \mathcal{F}=\mathcal{B}_{[0,1]}$, and

$$
\begin{aligned}
& \mathbb{P}([0,1])=1 \\
& \mathbb{P}([0,1 / 3])=\mathbb{P}([2 / 3,1])=2^{-1} \\
& \mathbb{P}([0,1 / 9])=\mathbb{P}([2 / 9,1 / 3])=\mathbb{P}([2 / 3,7 / 9])=\mathbb{P}([8 / 9,1])=2^{-2}
\end{aligned}
$$

and so on. Put $X(\omega)=\omega$, its distribution, called the Cantor distribution, is neither discrete nor continuous. Its distribution function, called the Cantor function, is continuous but not absolutely continuous.

4 Random vectors

Definition $\mathbf{7}$ The joint distribution of a random vector $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ is the function

$$
F_{\mathbf{X}}\left(x_{1}, \ldots, x_{n}\right)=\mathbb{P}\left(\left\{X_{1} \leq x_{1}\right\} \cap \ldots \cap\left\{X_{n} \leq x_{n}\right\}\right)
$$

Marginal distributions

$$
\begin{aligned}
F_{X_{1}}(x) & =F_{\mathbf{X}}(x, \infty, \ldots, \infty) \\
F_{X_{2}}(x) & =F_{\mathbf{X}}(\infty, x, \infty, \ldots, \infty) \\
& \ldots \\
F_{X_{n}}(x) & =F_{\mathbf{X}}(\infty, \ldots, \infty, x)
\end{aligned}
$$

The existence of the joint probability density function $f\left(x_{1}, \ldots, x_{n}\right)$ means that the distribution function

$$
F_{\mathbf{X}}\left(x_{1}, \ldots, x_{n}\right)=\int_{-\infty}^{x_{1}} \ldots \int_{-\infty}^{x_{n}} f\left(y_{1}, \ldots, y_{n}\right) d y_{1} \ldots d y_{n}, \quad \text { for all }\left(x_{1}, \ldots, x_{n}\right)
$$

is absolutely continuous, so that $f\left(x_{1}, \ldots, x_{n}\right)=\frac{\partial^{n} F\left(x_{1}, \ldots, x_{n}\right)}{\partial x_{1} \ldots \partial x_{n}}$ almost everywhere.
Example 8 In general, the joint distribution can not be recovered form the marginal distributions. If

$$
F_{X, Y}(x, y)=x y 1_{\left\{(x, y) \in[0,1]^{2}\right\}},
$$

then vectors (X, Y) and (X, X) have the same marginal distributions.
Exersize 2.7.14 b. Consider

$$
F(x, y)=\left\{\begin{array}{lc}
1-e^{-x}-x e^{-y} & \text { if } 0 \leq x \leq y \\
1-e^{-y}-y e^{-y} & \text { if } 0 \leq y \leq x \\
0 & \text { otherwise }
\end{array}\right.
$$

Show that $F(x, y)$ is the joint distribution function of some pair (X, Y). Find the marginal distribution functions and densities.

Solution. Three properties should be satisfied for $F(x, y)$ to be the joint distribution function of some pair (X, Y) :

1. $F(x, y)$ is non-decreasing on both variables,
2. $F(x, y) \rightarrow 0$ as $x \rightarrow-\infty$ and $y \rightarrow-\infty$,
3. $F(x, y) \rightarrow 1$ as $x \rightarrow \infty$ and $y \rightarrow \infty$.

Observe that

$$
f(x, y)=\frac{\partial^{2} F(x, y)}{\partial x \partial y}=e^{-y} 1_{\{0 \leq x \leq y\}}
$$

is always non-negative. Thus the first property follows from the integral representation:

$$
F(x, y)=\int_{-\infty}^{x} \int_{-\infty}^{y} f(u, v) d u d v
$$

which, for $0 \leq x \leq y$, is verifies as

$$
\int_{-\infty}^{x} \int_{-\infty}^{y} f(u, v) d u d v=\int_{0}^{x}\left(\int_{u}^{y} e^{-v} d v\right) d u=1-e^{-x}-x e^{-y}
$$

and for $0 \leq y \leq x$ as

$$
\int_{-\infty}^{x} \int_{-\infty}^{y} f(u, v) d u d v=\int_{0}^{y}\left(\int_{u}^{y} e^{-v} d v\right) d u=1-e^{-y}-y e^{-y}
$$

The second and third properties are straightforward. We have shown also that $f(x, y)$ is the joint density.
For $x \geq 0$ and $y \geq 0$ we obtain the marginal distributions as limits

$$
\begin{aligned}
& F_{X}(x)=\lim _{y \rightarrow \infty} F(x, y)=1-e^{-x}, \quad f_{X}(x)=e^{-x}, \\
& F_{Y}(y)=\lim _{x \rightarrow \infty} F(x, y)=1-e^{-y}-y e^{-y}, \quad f_{Y}(y)=y e^{-y} .
\end{aligned}
$$

$X \sim \operatorname{Exp}(1)$ and $Y \sim \operatorname{Gamma}(2,1)$.

5 Repeated coin tossing

Let S_{n} be the number of heads in n independent tossings of a fair coin. Figure 1 shows imbedded partitions $\mathcal{F}_{1} \subset \mathcal{F}_{2} \subset \mathcal{F}_{3} \subset \mathcal{F}_{4} \subset \mathcal{F}_{5}$ of the sample space generated by $S_{1}, S_{2}, S_{3}, S_{4}, S_{5}$.
Definition 9 A sequence of sigma-fields $\left\{\mathcal{F}_{n}\right\}_{n=1}^{\infty}$ such that

$$
\mathcal{F}_{1} \subset \mathcal{F}_{2} \subset \ldots \subset \mathcal{F}_{n} \subset \ldots, \quad \mathcal{F}_{n} \subset \mathcal{F} \text { for all } n
$$

is called a filtration.
The events representing our knowledge of the first three tossings is given by \mathcal{F}_{3}. From the perspective of \mathcal{F}_{3} we can not say exactly the value of S_{4}. Clearly, there is dependence between S_{3} and S_{4}. The joint distribution of S_{3} and S_{4} :

	$S_{4}=0$	$S_{4}=1$	$S_{4}=2$	$S_{4}=3$	$S_{4}=4$	Total
$S_{3}=0$	$1 / 16$	$1 / 16$	0	0	0	$1 / 8$
$S_{3}=1$	0	$3 / 16$	$3 / 16$	0	0	$3 / 8$
$S_{3}=2$	0	0	$3 / 16$	$3 / 16$	0	$3 / 8$
$S_{3}=3$	0	0	0	$1 / 16$	$1 / 16$	$1 / 8$
Total	$1 / 16$	$1 / 4$	$3 / 8$	$1 / 4$	$1 / 16$	1

The conditional expectation

$$
\mathbb{E}\left(S_{4} \mid S_{3}\right)=S_{3}+0.5
$$

is a discrete random variable with values $0.5,1.5,2.5,3.5$ and probabilities $1 / 8,3 / 8,3 / 8,1 / 8$.
For finite n the picture is straightforward. For $n=\infty$ it is a non-trivial task to define an overall $(\Omega, \mathcal{F}, \mathbb{P})$ with $\Omega=(0,1]$. One can use the Lebesgue measure $\mathbb{P}(d x)=d x$ and the sigma-field \mathcal{F} of Lebesgue measurable subsets of $(0,1]$. Not all subsets of $(0,1]$ are Lebesgue measurable. Not all Lebesgue measurable sets are Borel sets.

More generally, if the coin has probability p of heads, we can use $\left(\Omega, \mathcal{F}, \mathbb{P}_{p}\right)$ with the same (Ω, \mathcal{F}) and

$$
\mathbb{P}_{p}(d x)=l(p) x^{l(p)-1} d x, \quad l(p)=-\log _{2}(p)
$$

Figure 1: Sigma-fields for four consecutive coin tossings.

