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Abstract

A course based on the book Probabilities and Random Processes by Geoffrey Grimmett and
David Stirzaker. Chapter 1. Events and their probabilities. Chapter 2. Random variables and their
distributions.

1 Probability space

A random experiment is modeled in terms of a probability space (Ω,F ,P)

• the sample space Ω is the set of all possible outcomes of the experiment,

• the σ-field (or sigma-algebra) F is a collection of measurable subsets A ⊂ Ω (which are called
random events) satisfying

1. ∅ ∈ F ,

2. if Ai ∈ F , 0 = 1, 2, . . ., then ∪∞i=1Ai ∈ F , countable unions,

3. if A ∈ F , then Ac ∈ F , complementary event,

• the probability measure P is a function on F satisfying three probability axioms

1. if A ∈ F , then P(A) ≥ 0,

2. P(Ω) = 1,

3. if Ai ∈ F , 0 = 1, 2, . . . are all disjoint, then P(∪∞i=1Ai) =
∑∞

i=1 P(Ai).

De Morgan’s laws (⋂
i

Ai

)c
=
⋃
i

Ac
i ,

(⋃
i

Ai

)c
=
⋂
i

Ac
i .

Properties derived from the axioms

P(∅) = 0,

P(Ac) = 1− P(A),

P(A ∪B) = P(A) + P(B)− P(A ∩B).

Inclusion-exclusion rule

P(A1 ∪ . . . ∪An) =
∑
i

P(Ai)−
∑
i<j

P(Ai ∩Aj) +
∑

i<j<k

P(Ai ∩Aj ∩Ak)− . . .

+ (−1)n+1P(A1 ∩ . . . ∩An).

Continuity of the probability measure

• if A1 ⊂ A2 ⊂ . . . and A = ∪∞i=1Ai = limi→∞Ai, then P(A) = limi→∞ P(Ai),

• if B1 ⊃ B2 ⊃ . . . and B = ∩∞i=1Bi = limi→∞Bi, then P(B) = limi→∞ P(Bi).
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2 Conditional probability and independence

If P(B) > 0, then the conditional probability of A given B is

P(A|B) =
P(A ∩B)

P(B)
.

The law of total probability and the Bayes formula. Let B1, . . . , Bn be a partition of Ω, then

P(A) =

n∑
i=1

P(A|Bi)P(Bi),

P(Bj |A) =
P(A|Bj)P(Bj)∑n
i=1 P(A|Bi)P(Bi)

.

Definition 1 Events A1, . . . , An are independent, if for any subset of events (Ai1 , . . . , Aik)

P(Ai1 ∩ . . . ∩Aik) = P(Ai1) . . .P(Aik).

Example 2 Pairwise independence does not imply independence of three events. Toss two coins and
consider three events

• A ={heads on the first coin},

• B ={tails on the first coin},

• C ={one head and one tail}.
Clearly, P(C|A) = P(C) and P(C|B) = P(C) but P(C|A ∩B) = 0.

3 Random variables

A real random variable is a measurable function X : Ω → R so that different outcomes ω ∈ Ω can give
different values X(ω). Measurability of X(ω):

{ω : X(ω) ≤ x} ∈ F for any real number x.

Probability distribution PX(B) = P(X ∈ B) defines a new probability space (R,B,PX), where B = σ(all
open intervals) is the Borel sigma-algebra.

Definition 3 Distribution function (cumulative distribution function)

F (x) = FX(x) = PX{(−∞, x]} = P(X ≤ x).

In terms of the distribution function we get

P(a < X ≤ b) = F (b)− F (a),

P(X < x) = F (x−),

P(X = x) = F (x)− F (x−).

Any monotone right-continuous function with

lim
x→−∞

F (x) = 0 and lim
x→∞

F (x) = 1

can be a distribution function.

Definition 4 The random variable X is called discrete, if for some countable set of possible values

P(X ∈ {x1, x2, . . .}) = 1.

Its distribution is described by the probability mass function f(x) = P(X = x).
The random variable X is called continuous, if its distribution has a probability density function f(x):

F (x) =

∫ x

−∞
f(y)dy, for all x,

so that f(x) = F ′(x) almost everywhere.
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Example 5 The indicator of a random event IA = 1{ω∈A} with p = P(A) has a Bernoulli distribution
Ber(p)

P(IA = 1) = p, P(IA = 0) = 1− p.

For several events Sn =
∑n

i=1 IAi counts the number of events that occurred. If independent events
A1, A2, . . . have the same probability p = P(Ai), then Sn has a binomial distribution Bin(n, p)

P(Sn = k) =

(
n

k

)
pk(1− p)n−k, k = 0, 1, . . . , n.

Example 6 (Cantor distribution) Consider (Ω,F ,P) with Ω = [0, 1], F = B[0,1], and

P([0, 1]) = 1

P([0, 1/3]) = P([2/3, 1]) = 2−1

P([0, 1/9]) = P([2/9, 1/3]) = P([2/3, 7/9]) = P([8/9, 1]) = 2−2

and so on. Put X(ω) = ω, its distribution, called the Cantor distribution, is neither discrete nor contin-
uous. Its distribution function, called the Cantor function, is continuous but not absolutely continuous.

4 Random vectors

Definition 7 The joint distribution of a random vector X = (X1, . . . , Xn) is the function

FX(x1, . . . , xn) = P({X1 ≤ x1} ∩ . . . ∩ {Xn ≤ xn}).

Marginal distributions

FX1
(x) = FX(x,∞, . . . ,∞),

FX2
(x) = FX(∞, x,∞, . . . ,∞),

. . .

FXn
(x) = FX(∞, . . . ,∞, x).

The existence of the joint probability density function f(x1, . . . , xn) means that the distribution function

FX(x1, . . . , xn) =

∫ x1

−∞
. . .

∫ xn

−∞
f(y1, . . . , yn)dy1 . . . dyn, for all (x1, . . . , xn),

is absolutely continuous, so that f(x1, . . . , xn) = ∂nF (x1,...,xn)
∂x1...∂xn

almost everywhere.

Example 8 In general, the joint distribution can not be recovered form the marginal distributions. If

FX,Y (x, y) = xy1{(x,y)∈[0,1]2},

then vectors (X,Y ) and (X,X) have the same marginal distributions.

Exersize 2.7.14 b. Consider

F (x, y) =

 1− e−x − xe−y if 0 ≤ x ≤ y,
1− e−y − ye−y if 0 ≤ y ≤ x,
0 otherwise.

Show that F (x, y) is the joint distribution function of some pair (X,Y ). Find the marginal distribution
functions and densities.

Solution. Three properties should be satisfied for F (x, y) to be the joint distribution function of some
pair (X,Y ):

1. F (x, y) is non-decreasing on both variables,

2. F (x, y)→ 0 as x→ −∞ and y → −∞,
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3. F (x, y)→ 1 as x→∞ and y →∞.

Observe that

f(x, y) =
∂2F (x, y)

∂x∂y
= e−y1{0≤x≤y}

is always non-negative. Thus the first property follows from the integral representation:

F (x, y) =

∫ x

−∞

∫ y

−∞
f(u, v)dudv,

which, for 0 ≤ x ≤ y, is verifies as∫ x

−∞

∫ y

−∞
f(u, v)dudv =

∫ x

0

(∫ y

u

e−vdv
)
du = 1− e−x − xe−y,

and for 0 ≤ y ≤ x as∫ x

−∞

∫ y

−∞
f(u, v)dudv =

∫ y

0

(∫ y

u

e−vdv
)
du = 1− e−y − ye−y.

The second and third properties are straightforward. We have shown also that f(x, y) is the joint density.
For x ≥ 0 and y ≥ 0 we obtain the marginal distributions as limits

FX(x) = lim
y→∞

F (x, y) = 1− e−x, fX(x) = e−x,

FY (y) = lim
x→∞

F (x, y) = 1− e−y − ye−y, fY (y) = ye−y.

X ∼ Exp(1) and Y ∼ Gamma(2, 1).

5 Repeated coin tossing

Let Sn be the number of heads in n independent tossings of a fair coin. Figure 1 shows imbedded
partitions F1 ⊂ F2 ⊂ F3 ⊂ F4 ⊂ F5 of the sample space generated by S1, S2, S3, S4, S5.

Definition 9 A sequence of sigma-fields {Fn}∞n=1 such that

F1 ⊂ F2 ⊂ . . . ⊂ Fn ⊂ . . . , Fn ⊂ F for all n

is called a filtration.

The events representing our knowledge of the first three tossings is given by F3. From the perspective
of F3 we can not say exactly the value of S4. Clearly, there is dependence between S3 and S4. The joint
distribution of S3 and S4:

S4 = 0 S4 = 1 S4 = 2 S4 = 3 S4 = 4 Total
S3 = 0 1/16 1/16 0 0 0 1/8
S3 = 1 0 3/16 3/16 0 0 3/8
S3 = 2 0 0 3/16 3/16 0 3/8
S3 = 3 0 0 0 1/16 1/16 1/8
Total 1/16 1/4 3/8 1/4 1/16 1

The conditional expectation
E(S4|S3) = S3 + 0.5

is a discrete random variable with values 0.5, 1.5, 2.5, 3.5 and probabilities 1/8, 3/8, 3/8, 1/8.
For finite n the picture is straightforward. For n = ∞ it is a non-trivial task to define an overall

(Ω,F ,P) with Ω = (0, 1]. One can use the Lebesgue measure P(dx) = dx and the sigma-field F of
Lebesgue measurable subsets of (0, 1]. Not all subsets of (0, 1] are Lebesgue measurable. Not all Lebesgue
measurable sets are Borel sets.

More generally, if the coin has probability p of heads, we can use (Ω,F ,Pp) with the same (Ω,F) and

Pp(dx) = l(p)xl(p)−1dx, l(p) = − log2(p).
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Figure 1: Sigma-fields for four consecutive coin tossings.
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