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Abstract

A course based on the book Probabilities and Random Processes by Geoffrey Grimmett and
David Stirzaker. Chapter 3. Discrete random variables. Chapter 4. Continuous random variables.

1 Expectation

The expected value of X is

E(X) =

∫
Ω

X(ω)P(dω).

A discrete r.v. X with a finite number of possible values is a simple r.v. in that

X =
n∑
i=1

xiIAi

for some partition A1, . . . , An of Ω. In this case the meaning of the expectation is obvious

E(X) =

n∑
i=1

xiP(Ai).

For any non-negative r.v. X there are simple r.v. such that Xn(ω) ↗ X(ω) for all ω ∈ Ω, and the
expectation is defined as a possibly infinite limit E(X) = limn→∞ E(Xn).

Any r.v. X can be written as a difference of two non-negative r.v. X+ = X ∨ 0 and X− = −X ∧ 0.
If at least one of E(X+) and E(X−) is finite, then E(X) = E(X+) − E(X−), otherwise E(X) does not
exist.

Example 1 A discrete r.v. with the probability mass function f(k) = 1
2k(k−1) for k = −1,±2,±3, . . .

has no expectation.

For a discrete r.v. X with mass function f and any function g

E(g(X)) =
∑
x

g(x)f(x).

For a continuous r.v. X with density f and any measurable function g

E(g(X)) =

∫ ∞
−∞

g(x)f(x)dx.

In general

E(X) =

∫
Ω

X(ω)P(dω) =

∫ ∞
−∞

xPX(dx) =

∫ ∞
−∞

xdF (x) =

∫ ∞
−∞

(1− F (x))dx.

Example 2 Turn to the example in Lecture 1 of a random variable X with the Cantor distribution. A
sequence of simple r.v. monotonely converging to X

X1(ω) = 0, E(X0) = 0,

X2(ω) = (1/2)I{[1/3,1]}(ω), E(X1) = 1/4,

X3(ω) = (1/4)I{[1/9,1/3]}(ω) + (1/2)I{[1/3,4/9]}(ω) + (3/4)I{[4/9,1]}(ω), E(X2) = 3/8, . . .

gives E(X) = 1/2.

1



Cauchy-Schwartz inequality: for r.v. X and Y(
E(XY )

)2 ≤ E(X2)E(Y 2)

with equality if only if aX + bY = 1 a.s. for some non-trivial pair of constants (a, b). Variance, standard
deviation, covariance and correlation

var(X) = E
(
X − EX

)2
= E(X2)− (EX)2, σX =

√
var(X),

cov(X,Y ) = E
(
X − EX

)(
Y − EY

)
= E(XY )− (EX)(EY ),

ρ(X,Y ) =
cov(X,Y )

σXσY
.

Definition 3 Random variables (X1, . . . , Xn) are called independent if for any (x1, . . . , xn)

P(X1 ≤ x1, . . . , Xn ≤ xn) = P(X1 ≤ x1) . . .P(Xn ≤ xn).

In the jointly continuous case this equivalent to

f(x1, . . . , xn) = fX1
(x1) . . . fXn(xn).

2 Conditional expectation

Definition 4 For a pair of discrete random variables (X,Y ) the conditional expectation E(Y |X) is
defined as ψ(X), where

ψ(x) =
∑
y

yP(Y = y|X = x).

Definition 5 Consider a pair of random variables (X,Y ) with joint density f(x, y), marginal densities

f1(x) =

∫ ∞
−∞

f(x, y)dy

and conditional densities

f1(x|y) =
f(x, y)

f2(y)
, f2(y|x) =

f(x, y)

f1(x)

The conditional expectation E(Y |X) is defined as ψ(X), where

ψ(x) =

∫ ∞
−∞

yf2(y|x).

Properties of conditional expectations

• linearity: E(aY + bZ|X) = aE(aY |X) + bE(Z|X) for any constants (a, b,

• pull-through property: E(Y g(X)|X) = g(X)E(Y |X) for any measurable function g(x),

• tower property: E(E(Y |X)) = E(Y ) or more generally E(E(Y |X,Z)|X) = E(Y |X).

3 Multinomial distribution

De Moivre trials: each trial has r possible outcomes with probabilities (p1, . . . , pr). Consider n such
independent trials and let (X1, . . . , Xr) be the counts of different outcomes. Multinomial distribution
Mn(n, p1, . . . , pr)

P(X1 = k1, . . . , Xr = kr) =
n!

k1! . . . kr!
pk11 . . . pkrr .

Marginal distributions Xi ∼ Bin(n, pi), also

(X1 +X2, X3 . . . , Xr) ∼ Mn(n, p1 + p2, p3, . . . , pr).
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Conditionally on X1

(X2, . . . , Xr) ∼ Mn(n−X1,
p2

1− p1
, . . . ,

pr
1− p1

),

so that (Xi|Xj) ∼ Bin(n−Xj ,
pi

1−pj ) and E(Xi|Xj) = (n−Xj)
pi

1−pj . It follows

E(XiXj) = E(E(XiXj |Xj))

= E(XjE(Xi|Xj)) = E(nXj −X2
j )

pi
1− pj

= (n2pj − npj(1− pj) + n2p2
j )

pi
1− pj

= n(n− 1)pipj

and cov(Xi, Xj) = −npipj so that

ρ(Xi, Xj) = −
√

pipj
(1− pi)(1− pj)

.

4 Multivariate normal distribution

Bivariate normal distribution with parameters (µ1, µ2, σ1, σ2, ρ)

f(x, y) =
1

2πσ1σ2

√
1− ρ2

exp

{
−

(x−µ1

σ1
)2 − 2ρ(x−µ1

σ1
)(y−µ2

σ2
) + (y−µ2

σ2
)2

2(1− ρ2)

}
.

Marginal distributions

f1(x) =
1√

2πσ1

e
− (x−µ1)2

2σ21 , f2(y) =
1√

2πσ2

e
− (y−µ2)2

2σ22 ,

and conditional distributions

f1(x|y) =
f(x, y)

f2(y)
=

1

σ1

√
2π(1− ρ2)

exp

{
−

(x− µ1 − ρσ1

σ2
(y − µ2))2

2σ2
1(1− ρ2)

}
,

f2(y|x) =
f(x, y)

f1(x)
=

1

σ2

√
2π(1− ρ2)

exp

{
−

(y − µ2 − ρσ2

σ1
(x− µ1))2

2σ2
2(1− ρ2)

}
.

The covariance matrix of a random vector (X1, . . . , Xn) with means µ = (µ1, . . . , µn)

V = E
(
X− µ

)t(
X− µ

)
= ‖cov(Xi, Xj)‖

is symmetric and nonnegative-definite. For any vector a = (a1, . . . , an) the r.v. a1X1 + . . .+ anXn has
mean aµt and variance

var(a1X1 + . . .+ anXn) = E
(
aXt − aµt

)(
Xat − µat

)
= aVat.

A multivariate normal distribution with mean vector µ = (µ1, . . . , µn) and covariance matrix V has
density

f(x) =
1√

(2π)ndetV
e−(x−µ)V−1(x−µ)t .

For any vector (a1, . . . , an) the r.v. a1X1 + . . .+ anXn is normally distributed. Application in statistics:
in the IID case: µ = (µ, . . . , µ) and V = diag{σ2, . . . , σ2} the sample mean and sample variance

X̄ =
X1 + . . .+Xn

n
, s2 =

(X1 − X̄)2 + . . .+ (Xn − X̄)2

n− 1

are independent and
√
n(X̄−µ)
s has a t-distribution with n− 1 degrees of freedom.
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If Y and Z are independent r.v. with standard normal distribution, their ratio X = Y/Z has a
Cauchy distribution with density

f(x) =
1

π(1 + x2)
, −∞ < x <∞.

In the Cauchy distribution case the mean is undefined and X̄
d
= X. Cauchy and normal distributions

are examples of stable distributions. The Cauchy distribution provides with a counterexample for the
law of large numbers.

5 Sampling from a distribution

Computers generate pseudo-random numbers U1, U2, . . . which we consider as IID r.v. with U[0,1] distri-
bution.

Inverse transform sampling: if F is a cdf and U ∼ U[0,1], then X = F−1(U) has cdf F . It fol-
lows from

{F−1(U) ≤ x} = {U ≤ F (x)}.

Examples

• Bernoulli distribution X = I{U≤p},

• binomial sampling: Sn = X1 + . . .+Xn, Xk = I{Uk≤p},

• exponential distribution X = − ln(U)/λ,

• gamma sampling: Sn = X1 + . . .+Xn, Xk = − ln(Uk)/λ.

Rejection sampling. Suppose that we know how to sample from density g(x) but we want to sample
from density f(x) such that f(x) ≤ ag(x) for some a > 0. Algorithm

• sample x from g(x) and u from U[0,1],

• if u ≤ f(x)
ag(x) , accept x as a realization of sampling from f(x),

• if not, reject the value of x and repeat the sampling step.

Proof. Let Z and U be independent, Z has density g(x) and U ∼ U[0,1]. Then

P
(
Z ≤ x

∣∣∣U ≤ f(Z)

ag(Z)

)
=

∫ x
−∞ P

(
U ≤ f(y)

ag(y)

)
g(y)dy∫∞

−∞ P
(
U ≤ f(y)

ag(y)

)
g(y)dy

=

∫ x

−∞
f(y)dy.

6 Simple random walks

Let Sn = a + X1 + . . . + Xn where X1, X2, . . . are IID r.v. taking values 1 and −1 with probabilities p
and q = 1− p. This Markov chain is homogeneous both in space and time. We have Sn = 2Zn−n, with
Zn ∼ Bin(n, p). Symmetric random walk if p = 0.5. Drift upwards p > 0.5 or downwards p < 0.5 like in
casino.

The ruin probability pk = pk(N): your starting capital k against casino’s N − k. The difference
equation

pk = p · pk+1 + q · pk−1, pN = 0, p0 = 1

gives

pk(N) =

{
(q/p)N−(q/p)k

(q/p)N−1
, if p 6= 0.5,

N−k
N , if p = 0.5.
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Start from zero and let τb be the first hitting time of b, then for b > 0

P(τ−b <∞) = lim
N→∞

pb(N) =

{
1, if p ≤ 0.5,

(q/p)b, if p > 0.5,

and

P(τb <∞) =

{
1, if p ≥ 0.5,

(p/q)b, if p < 0.5.

The mean number Dk = Dk(N) of steps before hitting either 0 or N . The difference equation

Dk = p · (1 +Dk+1) + q · (1 +Dk−1), D0 = DN = 0

gives

Dk(N) =

{
1
q−p

[
k −N · 1−(q/p)k

1−(q/p)N

]
, if p 6= 0.5,

k(N − k), if p = 0.5.

If p < 0.5, then the expected ruin time is computed as Dk(N)→ k
q−p as N →∞.

There are

Nn(a, b) =

(
n

ka

)
, ka =

n+ b− a
2

paths from a to b in n steps. Each path has probability pkqn−k, k = ka. Thus

P(Sn = b|S0 = a) =

(
n

k

)
pkqn−k, k = ka.

In particular, P(S2n = a|S0 = a) =
(

2n
n

)
(pq)n. Reflection principle: the number of n-paths visiting r is

Nr
n(a, b) = Nn(2r − a, b), a ≥ r, b ≥ r,

Nr
n(a, b) = Nn(a, 2r − b), a < r, b < r.

Ballot theorem: if b > 0, then the number of n-paths 0→ b not revisiting zero is

Nn−1(1, b)−N0
n−1(1, b) = Nn−1(1, b)−Nn−1(−1, b)

=

(
n− 1

k0 − 1

)
−
(
n− 1

k0

)
= (b/n)Nn(0, b).

Thus (by default we will assume S0 = 0)

P(S1 > 0, . . . Sn−1 > 0|Sn = b) =
b

n
, b > 0,

P(S1 6= 0, . . . Sn−1 6= 0, Sn = b) =
|b|
n
P(Sn = b),

P(S1 6= 0, . . . Sn 6= 0) = n−1E|Sn|.

It follows that for p = 0.5 we have (see 3.10.22)

P(S1 6= 0, . . . S2m 6= 0) = P(S2m = 0). (1)

For the maximum Mn = max{S0, . . . , Sn} using Nr
n(0, b) = Nn(0, 2r − b) for r > b and r > 0 we get

P(Mn ≥ r, Sn = b) = (q/p)r−bP(Sn = 2r − b),

implying for b > 0

P(S1 < b, . . . Sn−1 < b, Sn = b) =
b

n
P(Sn = b).

The obtained equality

P(S1 > 0, . . . Sn−1 > 0, Sn = b) = P(S1 < b, . . . Sn−1 < b, Sn = b)

5



can be explained in terms of the reversed walk also starting at zero: the initial walk comes to b without
revisiting zero means that the reversed walk reaches its maximum on the final step.

The first hitting time τb has distribution

P(τb = n) =
|b|
n
P(Sn = b), n > 0.

The mean number of visits of b 6= 0 before revisiting zero

E
∞∑
n=1

I{S1 6=0,...Sn−1 6=0,Sn=b} =

∞∑
n=1

P(τb = n) = P(τb <∞).

Arcsine law for the last visit to the origin. Let p = 0.5, S0 = 0, and T2n be the time of the last
visit to zero up to time 2n. Then

P(T2n ≤ 2xn)→
∫ x

0

dy

π
√
y(1− y)

=
2

π
arcsin

√
x, n→∞.

Proof∗. Using (1) we get

P(T2n = 2k) = P(S2k = 0)P(S2k+1 6= 0, . . . , S2n 6= 0|S2k = 0)

= P(S2k = 0)P(S2(n−k) = 0),

and it remains to apply Stirling’s formula.

Arcsine law for sojourn times. Let p = 0.5, S0 = 0, and T+
2n be the number of time intervals spent

on the positive side up to time 2n. Then T+
2n

d
= T2n.

Proof∗. First using

P(S1 > 0, . . . , S2n > 0) = P(S1 = 1, S2 ≥ 1, . . . , S2n ≥ 1) =
1

2
P(T+

2n = 2n)

and (1) observe that
P(T+

2n = 0) = P(T+
2n = 2n) = P(S2n = 0).

Then by induction over n one can show that

P(T+
2n = 2k) = P(S2k = 0)P(S2(n−k) = 0)

for k = 1, . . . , n− 1, applying the following useful relation

P(S2n = 0) =

n∑
k=1

P(S2(n−k) = 0)P(τ0 = 2k),

where τ0 is the time of first return to zero.
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