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Abstract

A course based on the book Probabilities and Random Processes by Geoffrey Grimmett and
David Stirzaker. Chapter 3. Discrete random variables. Chapter 4. Continuous random variables.

1 Expectation

The expected value of X is
E(X) = / X(w)P(dw).
Q

A discrete r.v. X with a finite number of possible values is a simple r.v. in that

X = i xi]Ai
i=1

for some partition Aq,..., A, of Q. In this case the meaning of the expectation is obvious
n
E(X) =Y aP(A).
i=1

For any non-negative r.v. X there are simple r.v. such that X, (w) / X(w) for all w € Q, and the
expectation is defined as a possibly infinite limit E(X) = lim,, ., E(X,).

Any r.v. X can be written as a difference of two non-negative r.v. X =XV 0and X~ = -X AO.
If at least one of E(X ) and E(X ) is finite, then E(X) = E(XT) — E(X ), otherwise E(X) does not
exist.

Example 1 A discrete r.v. with the probability mass function f(k) = m for k= —1,+£2 £3,...
has no expectation.

For a discrete r.v. X with mass function f and any function g
E(9(X)) =) g(x)f(x).

For a continuous r.v. X with density f and any measurable function g

In general

E(X) = /Q X (w)P(dw) = [ O:OxHDX(da:): [ O;xdF(x): [ O;(I—F(x))dx.

Example 2 Turn to the example in Lecture 1 of a random variable X with the Cantor distribution. A
sequence of simple T.v. monotonely converging to X

Xi(w) =0, E(Xo)=0,

Xo(w) = (1/2) (/a1 (W), E(X1) =1/4,

Xs(w) = (/D) Ip 9 /33 (W) + (1/2) {1 /3,470) (W) + (3/D){aj01)y (), E(X2) =3/8,...
gives E(X) =1/2.



Cauchy-Schwartz inequality: for r.v. X and Y
(E(XY))® < E(X?)E(Y?)

with equality if only if aX +bY = 1 a.s. for some non-trivial pair of constants (a,b). Variance, standard
deviation, covariance and correlation

var(X) = E(X — EX)® = E(X?) — (EX)?, ox = /var(X),
cov(X,Y) = E(X —EX) (Y —EY) = E(XY) — (EX)(EY),

cov(X,Y
p(X,v) = LY
Ox0y
Definition 3 Random variables (X1,...,X,) are called independent if for any (z1,...,2,)

In the jointly continuous case this equivalent to

flze, .. xn) = fx,(z1) ... fx, (Tn)-

2 Conditional expectation

Definition 4 For a pair of discrete random variables (X,Y) the conditional expectation E(Y|X) is
defined as ¥(X), where

P(x) = ZyIP’(Y =yl X =z).
y
Definition 5 Consider a pair of random wvariables (X,Y) with joint density f(x,y), marginal densities

fi(a) = /_ " )y

and conditional densities

_ f(zy) _ f(zy)
The conditional expectation E(Y|X) is defined as ¢(X), where
vie) = [ sl

Properties of conditional expectations
e linearity: E(aY + bZ|X) = aE(aY|X) + VE(Z|X) for any constants (a, b,
e pull-through property: E(Y¢(X)|X) = g(X)E(Y|X) for any measurable function g(z),
e tower property: E(E(Y]X)) = E(Y) or more generally E(E(Y|X, Z)|X) = E(Y|X).

3 Multinomial distribution

De Moivre trials: each trial has r possible outcomes with probabilities (p1,...,p,). Consider n such
independent trials and let (X7i,..., X, ) be the counts of different outcomes. Multinomial distribution
Mn(n,ph'"ap’r) |
n k K,
]P(Xl = kl,...7X7- = kf,«) = mpll Dy

Marginal distributions X; ~ Bin(n,p;), also

(Xl + X2aX3 cee 7XT) ~ Mn(n,pl +p27p37 e 7pT)'



Conditionally on X7

b2 Dr
X,...,X,) ~ Mn(n — X, ,
e TR e

so that (X;|X;) ~ Bin(n — X, 12 ) and E(X;|X;) = (n —Xj)lf;]

E(X:X;) = E(E(X; X;]X;))

=E(X,E(X;|X;)) = E(nX; — X2)1_2p

Di
— — Dpip.
- n(n — 1)pip;

= (n®p; — np; (1 — p;) + n°p?)
and cov(X;, X;) = —np;p; so that

Pipj
p(Xl’XJ):_ (1—]?1)(1—293)

4 Multivariate normal distribution

Bivariate normal distribution with parameters (p1, 2, 01,09, p)

I G et 7 - R s
2mo1094/1 — p? 2(1 - p?) .

flz,y) =

Marginal distributions

1 _(@—pp)? 1 _ (w—p)?

fl(ﬂ?):me SEI fz(y):\/ﬂa e
1 2

and conditional distributions

)
filzly) = )

f(=z 1 B

faly) o1/ 2m(1 — p?) exp{ 202(1 —p?)
falyls) = flz,y) 1 ox _(y Mo — ( —))?
T TRG) T i) 2031 — ) ‘

The covariance matrix of a random vector (Xy, ..., X,,) with means g = (u1,..., in)

(@ — p1 — 22 (y — p1a))? }

V=E(X — )" (X - ) = eov(X,, X,)|

is symmetric and nonnegative-definite. For any vector a = (a1,...,a,) the r.v. a1 X1 + ... + a, X,, has
mean au' and variance

var(a; X1+ ...+ apXp) = IE(aXt — aut) (Xat — uat) = aVa'.

A multivariate normal distribution with mean vector g = (p1, ..., i) and covariance matrix V has

density
f(x) = 1 o~ (=) V7 (x—p)"
(2m)"detV
For any vector (a1, ...,a,) ther.v. a1 X7 + ...+ a, X, is normally distributed. Application in statistics:
in the IID case: g = (u,...,u) and V = diag{o?,..., 0%} the sample mean and sample variance
T Xi+...+X, 2 (X1 —X)2?2+.. .+ (X, —X)?
== " =

n n—1

(X ©)

are independent and Vi has a t-distribution with n — 1 degrees of freedom.



If Y and Z are independent r.v. with standard normal distribution, their ratio X = Y/Z has a
Cauchy distribution with density

1

In the Cauchy distribution case the mean is undefined and X 2 x. Cauchy and normal distributions
are examples of stable distributions. The Cauchy distribution provides with a counterexample for the
law of large numbers.

5 Sampling from a distribution

Computers generate pseudo-random numbers Uy, U, . .. which we consider as IID r.v. with Uy ;j distri-
bution.

Inverse transform sampling: if F' is a cdf and U ~ Uy, then X = F_;(U) has cdf F. It fol-
lows from

{F.1(U) <z} ={U < F(z)}.
Examples
e Bernoulli distribution X = I1y<py,
e binomial sampling: S, = X1 +... + Xy, Xi = 1y, <py,
e exponential distribution X = —In(U)/A,
e gamma sampling: S, = X7 + ...+ X,,, X = —In(Ug) /.

Rejection sampling. Suppose that we know how to sample from density g(z) but we want to sample
from density f(z) such that f(z) < ag(z) for some a > 0. Algorithm

e sample z from g(x) and u from Uy 13,

o ifu< afg((ﬂ;)), accept = as a realization of sampling from f(x),

e if not, reject the value of z and repeat the sampling step.

Proof. Let Z and U be independent, Z has density g(x) and U ~ Ujg 3). Then

f2)N ffOO]P’(U < fg(f; )g(y)dy T
]P’(Z < x‘U < ag(Z)) - ffoooP(U ST /m f(y)dy.

)
y))g Y

6 Simple random walks

Let S, =a+ X1+ ...+ X,, where X7, X5, ... are IID r.v. taking values 1 and —1 with probabilities p
and ¢ = 1 — p. This Markov chain is homogeneous both in space and time. We have S,, = 27,, — n, with
Z, ~ Bin(n,p). Symmetric random walk if p = 0.5. Drift upwards p > 0.5 or downwards p < 0.5 like in
casino.
The ruin probability pr = pr(IN): your starting capital k against casino’s N — k. The difference
equation
Pk =D DPk+1+q Pk—1, pn=0, po=1

gives

(¢/p)N—-1

pe(N) = (/P —(a/p)* . ifp £ 0.5,
Nk if p=0.5.



Start from zero and let 7, be the first hitting time of b, then for b > 0

P(r_p < 00) = Iggnoopb(N) = { (q/p)b, if p>0.5,

and
1, if p > 0.5,

Pn < o0) = { (p/q)b, if p<0.5.

The mean number Dy = Dy (N) of steps before hitting either 0 or N. The difference equation

Dy=p-(1+Dgy1)+q-(1+Dr-1), Do=Dn=0

gives
A (g N =/mt .
Dy(N)=4( o [k N 1—(q/p)N] , ifp#0.5,
If p < 0.5, then the expected ruin time is computed as Dy(N) — ﬁ as N — oo.
There are b
n n+b—a
o= (2) mae

paths from a to b in n steps. Each path has probability pF¢" %, k = k,. Thus

P(Sn = b|SO = Cl) = (Z)pkqn_k, k = ka-

2n
n

In particular, P(S2, = alSo = a) = (*")(pq)™. Reflection principle: the number of n-paths visiting r is

N} (a,b) = N,(2r —a,b), a>rb>r,
N7 (a,b) = Np(a,2r —b), a<rb<r.

Ballot theorem: if b > 0, then the number of n-paths 0 — b not revisiting zero is

N,_1(1,b) = N°_,(1,b) = N,,_1(1,b) — N,,_1(—1,b)
_ (;‘_D _ ("k_o 1) — (b/n)N,(0,0).

Thus (by default we will assume Sy = 0)

]P)(Sl>0,...Sn,1>0|5n:b):%, b>0,

P(S1 #0,...5,-1 #0,5, =b) = L%']P’(Sn =),
P(S; #0,...5, #0) =n"'E|S,|.
It follows that for p = 0.5 we have (see 3.10.22)
P(S1 #0,...S2m # 0) =P(S2, =0). (1)
For the maximum M,, = max{Sy,...,S,} using N (0,b) = N,,(0,2r —b) for r > b and r > 0 we get
P(M,, > 1,8, = b) = (q/p)"""P(S, = 2r —b),

implying for b > 0

P(Sy < b,...8,_1 <b,S, =b)= %]P’(Sn =b).

The obtained equality
P(Sl >0,...5,.1>0,8, = b) ZP(Sl <b,...5,.1<b8, = b)



can be explained in terms of the reversed walk also starting at zero: the initial walk comes to b without
revisiting zero means that the reversed walk reaches its maximum on the final step.
The first hitting time 7, has distribution

18l

P(r, =n) = "

P(S, =b), n>0.

The mean number of visits of b # 0 before revisiting zero

EZI{Sl;éO S 170,8,=b} = ZP P(7 < 00).

Arcsine law for the last visit to the origin. Let p = 0.5, S = 0, and T»,, be the time of the last
visit to zero up to time 2n. Then

2
P(Tzn < 2xn) — / _ w2 arcsin\/z, n — oo.
7

m/y(l—y

Proof*. Using (1) we get

P(Tgn = 2]{3) = ]P(Sgk = O)P(SQkJrl 74— 0, ey SQn # 0|52k = 0)
= P(Sar, = 0)P(Sa(n—r) = 0),

and it remains to apply Stirling’s formula.

Arcsine law for sojourn times. Let p = 0.5, Sy = 0, and T;;L be the number of time intervals spent

on the positive side up to time 2n. Then T, 2L Ty
Proof*. First using

1
P(S; >0,...,8, >0)=P(S;=1,5%>1,...,5, >1)= 5]P>(T2+n:2n)

and (1) observe that
P(Ty, = 0) = P(T4, = 2n) = P(S2, = 0).

Then by induction over n one can show that
P(T3, = 2k) = P(Sar = 0)P(S(n—1) = 0)

for k=1,...,n — 1, applying the following useful relation

where 7g is the time of first return to zero.



