## Lecture 2

Last updated by Serik Sagitov: November 23, 2012


#### Abstract

A course based on the book Probabilities and Random Processes by Geoffrey Grimmett and David Stirzaker. Chapter 3. Discrete random variables. Chapter 4. Continuous random variables.


## 1 Expectation

The expected value of $X$ is

$$
\mathbb{E}(X)=\int_{\Omega} X(\omega) \mathbb{P}(d \omega)
$$

A discrete r.v. $X$ with a finite number of possible values is a simple r.v. in that

$$
X=\sum_{i=1}^{n} x_{i} I_{A_{i}}
$$

for some partition $A_{1}, \ldots, A_{n}$ of $\Omega$. In this case the meaning of the expectation is obvious

$$
\mathbb{E}(X)=\sum_{i=1}^{n} x_{i} \mathbb{P}\left(A_{i}\right)
$$

For any non-negative r.v. $X$ there are simple r.v. such that $X_{n}(\omega) \nearrow X(\omega)$ for all $\omega \in \Omega$, and the expectation is defined as a possibly infinite limit $\mathbb{E}(X)=\lim _{n \rightarrow \infty} \mathbb{E}\left(X_{n}\right)$.

Any r.v. $X$ can be written as a difference of two non-negative r.v. $X^{+}=X \vee 0$ and $X^{-}=-X \wedge 0$. If at least one of $\mathbb{E}\left(X^{+}\right)$and $\mathbb{E}\left(X^{-}\right)$is finite, then $\mathbb{E}(X)=\mathbb{E}\left(X^{+}\right)-\mathbb{E}\left(X^{-}\right)$, otherwise $\mathbb{E}(X)$ does not exist.

Example 1 A discrete r.v. with the probability mass function $f(k)=\frac{1}{2 k(k-1)}$ for $k=-1, \pm 2, \pm 3, \ldots$ has no expectation.

For a discrete r.v. $X$ with mass function $f$ and any function $g$

$$
\mathbb{E}(g(X))=\sum_{x} g(x) f(x)
$$

For a continuous r.v. $X$ with density $f$ and any measurable function $g$

$$
\mathbb{E}(g(X))=\int_{-\infty}^{\infty} g(x) f(x) d x
$$

In general

$$
\mathbb{E}(X)=\int_{\Omega} X(\omega) \mathbb{P}(d \omega)=\int_{-\infty}^{\infty} x \mathbb{P}_{X}(d x)=\int_{-\infty}^{\infty} x d F(x)=\int_{-\infty}^{\infty}(1-F(x)) d x
$$

Example 2 Turn to the example in Lecture 1 of a random variable $X$ with the Cantor distribution. A sequence of simple r.v. monotonely converging to $X$

$$
\begin{aligned}
& X_{1}(\omega)=0, \quad \mathbb{E}\left(X_{0}\right)=0, \\
& X_{2}(\omega)=(1 / 2) I_{\{[1 / 3,1]\}}(\omega), \quad \mathbb{E}\left(X_{1}\right)=1 / 4, \\
& X_{3}(\omega)=(1 / 4) I_{\{[1 / 9,1 / 3]\}}(\omega)+(1 / 2) I_{\{[1 / 3,4 / 9]\}}(\omega)+(3 / 4) I_{\{[4 / 9,1]\}}(\omega), \quad \mathbb{E}\left(X_{2}\right)=3 / 8, \ldots
\end{aligned}
$$

gives $\mathbb{E}(X)=1 / 2$.

Cauchy-Schwartz inequality: for r.v. $X$ and $Y$

$$
(\mathbb{E}(X Y))^{2} \leq \mathbb{E}\left(X^{2}\right) \mathbb{E}\left(Y^{2}\right)
$$

with equality if only if $a X+b Y=1$ a.s. for some non-trivial pair of constants $(a, b)$. Variance, standard deviation, covariance and correlation

$$
\begin{aligned}
\operatorname{var}(X) & =\mathbb{E}(X-\mathbb{E} X)^{2}=\mathbb{E}\left(X^{2}\right)-(\mathbb{E} X)^{2}, \quad \sigma_{X}=\sqrt{\operatorname{var}(X)}, \\
\operatorname{cov}(X, Y) & =\mathbb{E}(X-\mathbb{E} X)(Y-\mathbb{E} Y)=\mathbb{E}(X Y)-(\mathbb{E} X)(\mathbb{E} Y) \\
\rho(X, Y) & =\frac{\operatorname{cov}(X, Y)}{\sigma_{X} \sigma_{Y}}
\end{aligned}
$$

Definition 3 Random variables $\left(X_{1}, \ldots, X_{n}\right)$ are called independent if for any $\left(x_{1}, \ldots, x_{n}\right)$

$$
\mathbb{P}\left(X_{1} \leq x_{1}, \ldots, X_{n} \leq x_{n}\right)=\mathbb{P}\left(X_{1} \leq x_{1}\right) \ldots \mathbb{P}\left(X_{n} \leq x_{n}\right)
$$

In the jointly continuous case this equivalent to

$$
f\left(x_{1}, \ldots, x_{n}\right)=f_{X_{1}}\left(x_{1}\right) \ldots f_{X_{n}}\left(x_{n}\right)
$$

## 2 Conditional expectation

Definition 4 For a pair of discrete random variables $(X, Y)$ the conditional expectation $\mathbb{E}(Y \mid X)$ is defined as $\psi(X)$, where

$$
\psi(x)=\sum_{y} y \mathbb{P}(Y=y \mid X=x)
$$

Definition 5 Consider a pair of random variables $(X, Y)$ with joint density $f(x, y)$, marginal densities

$$
f_{1}(x)=\int_{-\infty}^{\infty} f(x, y) d y
$$

and conditional densities

$$
f_{1}(x \mid y)=\frac{f(x, y)}{f_{2}(y)}, \quad f_{2}(y \mid x)=\frac{f(x, y)}{f_{1}(x)}
$$

The conditional expectation $\mathbb{E}(Y \mid X)$ is defined as $\psi(X)$, where

$$
\psi(x)=\int_{-\infty}^{\infty} y f_{2}(y \mid x) .
$$

Properties of conditional expectations

- linearity: $\mathbb{E}(a Y+b Z \mid X)=a \mathbb{E}(a Y \mid X)+b \mathbb{E}(Z \mid X)$ for any constants $(a, b$,
- pull-through property: $\mathbb{E}(Y g(X) \mid X)=g(X) \mathbb{E}(Y \mid X)$ for any measurable function $g(x)$,
- tower property: $\mathbb{E}(\mathbb{E}(Y \mid X))=\mathbb{E}(Y)$ or more generally $\mathbb{E}(\mathbb{E}(Y \mid X, Z) \mid X)=\mathbb{E}(Y \mid X)$.


## 3 Multinomial distribution

De Moivre trials: each trial has $r$ possible outcomes with probabilities $\left(p_{1}, \ldots, p_{r}\right)$. Consider $n$ such independent trials and let $\left(X_{1}, \ldots, X_{r}\right)$ be the counts of different outcomes. Multinomial distribution $\operatorname{Mn}\left(n, p_{1}, \ldots, p_{r}\right)$

$$
\mathbb{P}\left(X_{1}=k_{1}, \ldots, X_{r}=k_{r}\right)=\frac{n!}{k_{1}!\ldots k_{r}!} p_{1}^{k_{1}} \ldots p_{r}^{k_{r}}
$$

Marginal distributions $X_{i} \sim \operatorname{Bin}\left(n, p_{i}\right)$, also

$$
\left(X_{1}+X_{2}, X_{3} \ldots, X_{r}\right) \sim \operatorname{Mn}\left(n, p_{1}+p_{2}, p_{3}, \ldots, p_{r}\right)
$$

Conditionally on $X_{1}$

$$
\left(X_{2}, \ldots, X_{r}\right) \sim \operatorname{Mn}\left(n-X_{1}, \frac{p_{2}}{1-p_{1}}, \ldots, \frac{p_{r}}{1-p_{1}}\right)
$$

so that $\left(X_{i} \mid X_{j}\right) \sim \operatorname{Bin}\left(n-X_{j}, \frac{p_{i}}{1-p_{j}}\right)$ and $\mathbb{E}\left(X_{i} \mid X_{j}\right)=\left(n-X_{j}\right) \frac{p_{i}}{1-p_{j}}$. It follows

$$
\begin{aligned}
\mathbb{E}\left(X_{i} X_{j}\right) & =\mathbb{E}\left(\mathbb{E}\left(X_{i} X_{j} \mid X_{j}\right)\right) \\
& =\mathbb{E}\left(X_{j} \mathbb{E}\left(X_{i} \mid X_{j}\right)\right)=\mathbb{E}\left(n X_{j}-X_{j}^{2}\right) \frac{p_{i}}{1-p_{j}} \\
& =\left(n^{2} p_{j}-n p_{j}\left(1-p_{j}\right)+n^{2} p_{j}^{2}\right) \frac{p_{i}}{1-p_{j}}=n(n-1) p_{i} p_{j}
\end{aligned}
$$

and $\operatorname{cov}\left(X_{i}, X_{j}\right)=-n p_{i} p_{j}$ so that

$$
\rho\left(X_{i}, X_{j}\right)=-\sqrt{\frac{p_{i} p_{j}}{\left(1-p_{i}\right)\left(1-p_{j}\right)}}
$$

## 4 Multivariate normal distribution

Bivariate normal distribution with parameters $\left(\mu_{1}, \mu_{2}, \sigma_{1}, \sigma_{2}, \rho\right)$

$$
f(x, y)=\frac{1}{2 \pi \sigma_{1} \sigma_{2} \sqrt{1-\rho^{2}}} \exp \left\{-\frac{\left(\frac{x-\mu_{1}}{\sigma_{1}}\right)^{2}-2 \rho\left(\frac{x-\mu_{1}}{\sigma_{1}}\right)\left(\frac{y-\mu_{2}}{\sigma_{2}}\right)+\left(\frac{y-\mu_{2}}{\sigma_{2}}\right)^{2}}{2\left(1-\rho^{2}\right)}\right\}
$$

Marginal distributions

$$
f_{1}(x)=\frac{1}{\sqrt{2 \pi} \sigma_{1}} e^{-\frac{\left(x-\mu_{1}\right)^{2}}{2 \sigma_{1}^{2}}}, \quad f_{2}(y)=\frac{1}{\sqrt{2 \pi} \sigma_{2}} e^{-\frac{\left(y-\mu_{2}\right)^{2}}{2 \sigma_{2}^{2}}},
$$

and conditional distributions

$$
\begin{aligned}
& f_{1}(x \mid y)=\frac{f(x, y)}{f_{2}(y)}=\frac{1}{\sigma_{1} \sqrt{2 \pi\left(1-\rho^{2}\right)}} \exp \left\{-\frac{\left(x-\mu_{1}-\frac{\rho \sigma_{1}}{\sigma_{2}}\left(y-\mu_{2}\right)\right)^{2}}{2 \sigma_{1}^{2}\left(1-\rho^{2}\right)}\right\} \\
& f_{2}(y \mid x)=\frac{f(x, y)}{f_{1}(x)}=\frac{1}{\sigma_{2} \sqrt{2 \pi\left(1-\rho^{2}\right)}} \exp \left\{-\frac{\left(y-\mu_{2}-\frac{\rho \sigma_{2}}{\sigma_{1}}\left(x-\mu_{1}\right)\right)^{2}}{2 \sigma_{2}^{2}\left(1-\rho^{2}\right)}\right\}
\end{aligned}
$$

The covariance matrix of a random vector $\left(X_{1}, \ldots, X_{n}\right)$ with means $\boldsymbol{\mu}=\left(\mu_{1}, \ldots, \mu_{n}\right)$

$$
\mathbf{V}=\mathbb{E}(\mathbf{X}-\boldsymbol{\mu})^{\mathrm{t}}(\mathbf{X}-\boldsymbol{\mu})=\left\|\operatorname{cov}\left(X_{i}, X_{j}\right)\right\|
$$

is symmetric and nonnegative-definite. For any vector $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$ the r.v. $a_{1} X_{1}+\ldots+a_{n} X_{n}$ has mean $\mathbf{a} \boldsymbol{\mu}^{\mathrm{t}}$ and variance

$$
\operatorname{var}\left(a_{1} X_{1}+\ldots+a_{n} X_{n}\right)=\mathbb{E}\left(\mathbf{a} \mathbf{X}^{\mathrm{t}}-\mathbf{a} \boldsymbol{\mu}^{\mathrm{t}}\right)\left(\mathbf{X a}^{\mathrm{t}}-\boldsymbol{\mu} \mathbf{a}^{\mathrm{t}}\right)=\mathbf{a V} \mathbf{a}^{\mathrm{t}}
$$

A multivariate normal distribution with mean vector $\boldsymbol{\mu}=\left(\mu_{1}, \ldots, \mu_{n}\right)$ and covariance matrix $\mathbf{V}$ has density

$$
f(\mathbf{x})=\frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det} \mathbf{V}}} e^{-(\mathbf{x}-\boldsymbol{\mu}) \mathbf{V}^{-1}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{t}}}
$$

For any vector $\left(a_{1}, \ldots, a_{n}\right)$ the r.v. $a_{1} X_{1}+\ldots+a_{n} X_{n}$ is normally distributed. Application in statistics: in the IID case: $\boldsymbol{\mu}=(\mu, \ldots, \mu)$ and $\mathbf{V}=\operatorname{diag}\left\{\sigma^{2}, \ldots, \sigma^{2}\right\}$ the sample mean and sample variance

$$
\bar{X}=\frac{X_{1}+\ldots+X_{n}}{n}, \quad s^{2}=\frac{\left(X_{1}-\bar{X}\right)^{2}+\ldots+\left(X_{n}-\bar{X}\right)^{2}}{n-1}
$$

are independent and $\frac{\sqrt{n}(\bar{X}-\mu)}{s}$ has a $t$-distribution with $n-1$ degrees of freedom.

If $Y$ and $Z$ are independent r.v. with standard normal distribution, their ratio $X=Y / Z$ has a Cauchy distribution with density

$$
f(x)=\frac{1}{\pi\left(1+x^{2}\right)}, \quad-\infty<x<\infty
$$

In the Cauchy distribution case the mean is undefined and $\bar{X} \stackrel{d}{=} X$. Cauchy and normal distributions are examples of stable distributions. The Cauchy distribution provides with a counterexample for the law of large numbers.

## 5 Sampling from a distribution

Computers generate pseudo-random numbers $U_{1}, U_{2}, \ldots$ which we consider as IID r.v. with $\mathrm{U}_{[0,1]}$ distribution.

Inverse transform sampling: if $F$ is a cdf and $U \sim \mathrm{U}_{[0,1]}$, then $X=F_{-1}(U)$ has cdf $F$. It follows from

$$
\left\{F_{-1}(U) \leq x\right\}=\{U \leq F(x)\}
$$

Examples

- Bernoulli distribution $X=I_{\{U \leq p\}}$,
- binomial sampling: $S_{n}=X_{1}+\ldots+X_{n}, X_{k}=I_{\left\{U_{k} \leq p\right\}}$,
- exponential distribution $X=-\ln (U) / \lambda$,
- gamma sampling: $S_{n}=X_{1}+\ldots+X_{n}, X_{k}=-\ln \left(U_{k}\right) / \lambda$.

Rejection sampling. Suppose that we know how to sample from density $g(x)$ but we want to sample from density $f(x)$ such that $f(x) \leq a g(x)$ for some $a>0$. Algorithm

- sample $x$ from $g(x)$ and $u$ from $\mathrm{U}_{[0,1]}$,
- if $u \leq \frac{f(x)}{a g(x)}$, accept $x$ as a realization of sampling from $f(x)$,
- if not, reject the value of $x$ and repeat the sampling step.

Proof. Let $Z$ and $U$ be independent, $Z$ has density $g(x)$ and $U \sim \mathrm{U}_{[0,1]}$. Then

$$
\mathbb{P}\left(Z \leq x \left\lvert\, U \leq \frac{f(Z)}{a g(Z)}\right.\right)=\frac{\int_{-\infty}^{x} \mathbb{P}\left(U \leq \frac{f(y)}{a g(y)}\right) g(y) d y}{\int_{-\infty}^{\infty} \mathbb{P}\left(U \leq \frac{f(y)}{a g(y)}\right) g(y) d y}=\int_{-\infty}^{x} f(y) d y
$$

## 6 Simple random walks

Let $S_{n}=a+X_{1}+\ldots+X_{n}$ where $X_{1}, X_{2}, \ldots$ are IID r.v. taking values 1 and -1 with probabilities $p$ and $q=1-p$. This Markov chain is homogeneous both in space and time. We have $S_{n}=2 Z_{n}-n$, with $Z_{n} \sim \operatorname{Bin}(n, p)$. Symmetric random walk if $p=0.5$. Drift upwards $p>0.5$ or downwards $p<0.5$ like in casino.

The ruin probability $p_{k}=p_{k}(N)$ : your starting capital $k$ against casino's $N-k$. The difference equation

$$
p_{k}=p \cdot p_{k+1}+q \cdot p_{k-1}, \quad p_{N}=0, \quad p_{0}=1
$$

gives

$$
p_{k}(N)=\left\{\begin{array}{cl}
\frac{(q / p)^{N}-(q / p)^{k}}{(q / p) N-1}, & \text { if } p \neq 0.5 \\
\frac{N-k}{N}, & \text { if } p=0.5
\end{array}\right.
$$

Start from zero and let $\tau_{b}$ be the first hitting time of $b$, then for $b>0$

$$
\mathbb{P}\left(\tau_{-b}<\infty\right)=\lim _{N \rightarrow \infty} p_{b}(N)=\left\{\begin{array}{cl}
1, & \text { if } p \leq 0.5, \\
(q / p)^{b}, & \text { if } p>0.5,
\end{array}\right.
$$

and

$$
\mathbb{P}\left(\tau_{b}<\infty\right)=\left\{\begin{array}{cc}
1, & \text { if } p \geq 0.5 \\
(p / q)^{b}, & \text { if } p<0.5
\end{array}\right.
$$

The mean number $D_{k}=D_{k}(N)$ of steps before hitting either 0 or $N$. The difference equation

$$
D_{k}=p \cdot\left(1+D_{k+1}\right)+q \cdot\left(1+D_{k-1}\right), \quad D_{0}=D_{N}=0
$$

gives

$$
D_{k}(N)=\left\{\begin{array}{cl}
\frac{1}{q-p}\left[k-N \cdot \frac{1-(q / p)^{k}}{1-(q / p)^{N}}\right], & \text { if } p \neq 0.5, \\
k(N-k), & \text { if } p=0.5
\end{array}\right.
$$

If $p<0.5$, then the expected ruin time is computed as $D_{k}(N) \rightarrow \frac{k}{q-p}$ as $N \rightarrow \infty$.
There are

$$
N_{n}(a, b)=\binom{n}{k_{a}}, \quad k_{a}=\frac{n+b-a}{2}
$$

paths from $a$ to $b$ in $n$ steps. Each path has probability $p^{k} q^{n-k}, k=k_{a}$. Thus

$$
\mathbb{P}\left(S_{n}=b \mid S_{0}=a\right)=\binom{n}{k} p^{k} q^{n-k}, \quad k=k_{a} .
$$

In particular, $\mathbb{P}\left(S_{2 n}=a \mid S_{0}=a\right)=\binom{2 n}{n}(p q)^{n}$. Reflection principle: the number of $n$-paths visiting $r$ is

$$
\begin{array}{ll}
N_{n}^{r}(a, b)=N_{n}(2 r-a, b), & a \geq r, b \geq r, \\
N_{n}^{r}(a, b)=N_{n}(a, 2 r-b), & a<r, b<r .
\end{array}
$$

Ballot theorem: if $b>0$, then the number of $n$-paths $0 \rightarrow b$ not revisiting zero is

$$
\begin{aligned}
N_{n-1}(1, b)-N_{n-1}^{0}(1, b) & =N_{n-1}(1, b)-N_{n-1}(-1, b) \\
& =\binom{n-1}{k_{0}-1}-\binom{n-1}{k_{0}}=(b / n) N_{n}(0, b) .
\end{aligned}
$$

Thus (by default we will assume $S_{0}=0$ )

$$
\begin{aligned}
& \mathbb{P}\left(S_{1}>0, \ldots S_{n-1}>0 \mid S_{n}=b\right)=\frac{b}{n}, \quad b>0, \\
& \mathbb{P}\left(S_{1} \neq 0, \ldots S_{n-1} \neq 0, S_{n}=b\right)=\frac{|b|}{n} \mathbb{P}\left(S_{n}=b\right), \\
& \mathbb{P}\left(S_{1} \neq 0, \ldots S_{n} \neq 0\right)=n^{-1} \mathbb{E}\left|S_{n}\right| .
\end{aligned}
$$

It follows that for $p=0.5$ we have (see 3.10.22)

$$
\begin{equation*}
\mathbb{P}\left(S_{1} \neq 0, \ldots S_{2 m} \neq 0\right)=\mathbb{P}\left(S_{2 m}=0\right) \tag{1}
\end{equation*}
$$

For the maximum $M_{n}=\max \left\{S_{0}, \ldots, S_{n}\right\}$ using $N_{n}^{r}(0, b)=N_{n}(0,2 r-b)$ for $r>b$ and $r>0$ we get

$$
\mathbb{P}\left(M_{n} \geq r, S_{n}=b\right)=(q / p)^{r-b} \mathbb{P}\left(S_{n}=2 r-b\right)
$$

implying for $b>0$

$$
\mathbb{P}\left(S_{1}<b, \ldots S_{n-1}<b, S_{n}=b\right)=\frac{b}{n} \mathbb{P}\left(S_{n}=b\right)
$$

The obtained equality

$$
\mathbb{P}\left(S_{1}>0, \ldots S_{n-1}>0, S_{n}=b\right)=\mathbb{P}\left(S_{1}<b, \ldots S_{n-1}<b, S_{n}=b\right)
$$

can be explained in terms of the reversed walk also starting at zero: the initial walk comes to $b$ without revisiting zero means that the reversed walk reaches its maximum on the final step.

The first hitting time $\tau_{b}$ has distribution

$$
\mathbb{P}\left(\tau_{b}=n\right)=\frac{|b|}{n} \mathbb{P}\left(S_{n}=b\right), \quad n>0
$$

The mean number of visits of $b \neq 0$ before revisiting zero

$$
\mathbb{E} \sum_{n=1}^{\infty} I_{\left\{S_{1} \neq 0, \ldots S_{n-1} \neq 0, S_{n}=b\right\}}=\sum_{n=1}^{\infty} \mathbb{P}\left(\tau_{b}=n\right)=\mathbb{P}\left(\tau_{b}<\infty\right) .
$$

Arcsine law for the last visit to the origin. Let $p=0.5, S_{0}=0$, and $T_{2 n}$ be the time of the last visit to zero up to time $2 n$. Then

$$
\mathbb{P}\left(T_{2 n} \leq 2 x n\right) \rightarrow \int_{0}^{x} \frac{d y}{\pi \sqrt{y(1-y)}}=\frac{2}{\pi} \arcsin \sqrt{x}, \quad n \rightarrow \infty .
$$

Proof*. Using (1) we get

$$
\begin{aligned}
\mathbb{P}\left(T_{2 n}=2 k\right) & =\mathbb{P}\left(S_{2 k}=0\right) \mathbb{P}\left(S_{2 k+1} \neq 0, \ldots, S_{2 n} \neq 0 \mid S_{2 k}=0\right) \\
& =\mathbb{P}\left(S_{2 k}=0\right) \mathbb{P}\left(S_{2(n-k)}=0\right),
\end{aligned}
$$

and it remains to apply Stirling's formula.
Arcsine law for sojourn times. Let $p=0.5, S_{0}=0$, and $T_{2 n}^{+}$be the number of time intervals spent on the positive side up to time $2 n$. Then $T_{2 n}^{+} \stackrel{d}{=} T_{2 n}$.
Proof*. First using

$$
\mathbb{P}\left(S_{1}>0, \ldots, S_{2 n}>0\right)=\mathbb{P}\left(S_{1}=1, S_{2} \geq 1, \ldots, S_{2 n} \geq 1\right)=\frac{1}{2} \mathbb{P}\left(T_{2 n}^{+}=2 n\right)
$$

and (1) observe that

$$
\mathbb{P}\left(T_{2 n}^{+}=0\right)=\mathbb{P}\left(T_{2 n}^{+}=2 n\right)=\mathbb{P}\left(S_{2 n}=0\right)
$$

Then by induction over $n$ one can show that

$$
\mathbb{P}\left(T_{2 n}^{+}=2 k\right)=\mathbb{P}\left(S_{2 k}=0\right) \mathbb{P}\left(S_{2(n-k)}=0\right)
$$

for $k=1, \ldots, n-1$, applying the following useful relation

$$
\mathbb{P}\left(S_{2 n}=0\right)=\sum_{k=1}^{n} \mathbb{P}\left(S_{2(n-k)}=0\right) \mathbb{P}\left(\tau_{0}=2 k\right),
$$

where $\tau_{0}$ is the time of first return to zero

