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Abstract

A course based on the book Probability and Random Processes by Geoffrey Grimmett and David
Stirzaker. Chapter 5. Generating functions and their applications (5.6-5.10). Chapter 6. Markov
chains (6.1-6.3).

1 Characteristic functions

If X takes values k = 0, 1, 2, . . . with probabilities pk and
∑∞
k=0 pk = 1, then the distribution of X is

fully described by its probability generating function

G(s) = E(sX) =

∞∑
k=0

pks
k.

Key property: if X and Y are independent, then GX+Y (s) = GX(s)GY (s). Examples

• Bernoulli distribution G(s) = q + ps,

• binomial distribution G(s) = (q + ps)n,

• Poisson distribution G(s) = eλ(s−1).

Moment generating function of X is M(t) = E(etX). In the continuous case M(t) =
∫
etxf(x)dx.

Computing moments

E(X) = G′(1), E(X(X − 1)) = G′′(1),

E(X) = M ′(0), E(Xk) = M (k)(0).

Examples of moment generating functions

• Normal distribution M(t) = etµ+
1
2 t

2σ2

,

• exponential distribution M(t) = λ
λ−t for t < λ,

• Gamma(α, λ) distribution M(t) =
(

λ
λ−t

)α
for t < λ,

• Cauchy distribution M(0) = 1, M(t) =∞ for t 6= 0.

The characteristic function of X is complex valued φ(t) = E(eitX). The joint characteristic function

for X = (X1, . . . , Xn) is φ(t) = E(eitX
t

). Examples of characteristic functions

• normal distribution φ(t) = eitµ−
1
2 t

2σ2

,

• gamma distribution φ(t) =
(

λ
λ−it

)α
,

• Cauchy distribution φ(t) = e−|t|,

• multivariate normal distribution φ(t) = eitµ
t− 1

2 tVtt .

From the last example it follows that given a vector X = (X1, . . . , Xn) with a multivariate normal
distribution any linear combination aXt = a1X1 + . . .+ anXn is normally distributed since

E(etaX
t

) = φ(ta) = eitµ−
1
2 t

2σ2

, µ = aµt, σ2 = aVat.
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2 Weak law of large numbers

Definition 1 Convergence in distribution Xn
d→ X means

P(Xn ≤ x)→ P(X ≤ x) for all x such that P(X = x) = 0.

This is equvalent to the weak convergence Fn
d→ F of distribution functions when Fn(x)→ F (x) at each

point x where F is continuous.

Properties of characteristic functions

• two r.v. have the same characteristic function iff they have the same distribution function,

• if Xn
d→ X, then φn(t)→ φ(t) for all t,

• conversely, if φ(t) = limn→∞ φn(t) exists and continuous at t = 0, then φ is cf of some F , and

Fn
d→ F .

Theorem 2 If X1, X2, . . . are iid with finite mean µ and Sn = X1 + . . .+Xn, then

Sn/n
d→ µ, n→∞.

Proof. Let Fn and φn be the df and cf of n−1Sn. To prove Fn(x)
d→ 1{x≥µ} we have to see that

φn(t)→ eitµ which is obtained using a Taylor expansion

φn(t) =
(
φ1(tn−1)

)n
=
(

1 + iµtn−1 + o(n−1)
)n
→ eitµ.

Remarks. Statistical application: the sample mean is a consistent estimate of the population mean.

Counterexample: if Xi has the Cauchy distribution, then Sn/n
d
= X1 since φn(t) = φ1(t).

3 Central limit theorem

According the LLN |Sn − nµ| is much smaller than n. This difference is of order
√
n.

Theorem 3 If X1, X2, . . . are iid with finite mean µ and positive finite variance σ2, then for any x

P
(Sn − nµ

σ
√
n
≤ x

)
→ 1√

2π

∫ x

−∞
e−y

2/2dy, n→∞.

Proof. Let ψn be the cf of Sn−nµ
σ
√
n

. Using a Taylor expansion we obtain

ψn(t) =
(

1− t2

2n
+ o(n−1)

)n
→ e−t

2/2.

Remarks. Important example: simple random walks. 280 years ago de Moivre (1733) obtained the first
CLT in the symmetric case with p = 1/2.

Statistical application: the standardized sample mean has the sampling distribution which is approx-
imately N(0, 1). Approximate 95% confidence interval formula for the mean X̄ ± 1.96 s√

n
.

4 Markov chains

Conditional on the present value, the future of the system is independent of the past. A Markov chain
{Xn}∞n=0 with countably many states and transition matrix P with elements pij

P(Xn = j|Xn−1 = i,Xn−2 = in−2, . . . , X0 = i0) = pij .
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The n-step transition matrix with elements p
(n)
ij = P(Xn+m = j|Xm = i) equals Pn. Given the initial

distribution a as the vector with components ai = P(X0 = i), the distribution of Xn is given by the
vector aPn since

P(Xn = j) =

∞∑
i=−∞

P(Xn = j|X0 = i)P(X0 = i) =

∞∑
i=−∞

aip
(n)
ij .

Examples:

• IID chain has transition probabilities pij = pi,

• simple random walk has transition probabilities pij = p1{j=i+1} + q1{j=i−1},

• Bernoulli process has transition probabilities pij = p1{j=i+1} + q1{j=i} and state space S =
{0, 1, 2, . . .}.

Let Ti = min{n ≥ 1 : Xn = i} and put f
(n)
ij = P(Tj = n|X0 = i). Define the generating functions

Pij(s) =

∞∑
n=0

snp
(n)
ij , Fij(s) =

∞∑
n=1

snf
(n)
ij .

It is not difficult to see that

Pij(s) = 1{j=i} + Fij(s)Pjj(s)

Pii(s) =
1

1− Fii(s)
.

Classification of states

• state i is called recurrent (persistent), if P(Ti < ∞|X0 = i) = 1, otherwise i is called a transient
state,

• a recurrent state i is called null-recurrent, if E(Ti|X0 = i) =∞,

• state i is called positive-recurrent, if E(Ti|X0 = i) <∞.

Since Fii(1) = P(Ti <∞|X0 = i), we conclude that state i is recurrent iff Pii(1) =∞.

Theorem 4 State i is recurrent iff

∞∑
n=1

p
(n)
ii =∞. (1)

A recurrent state i is null-recurrent iff p
(n)
ii → 0.

Example. For a simple random walk

P(S2n = i|S0 = i) =

(
2n

n

)
(pq)n.

Using the Stirling formula n! ∼ nne−n
√

2πn we get

p
(2n)
ii ∼ (4pq)n√

πn
, n→∞.

Criterium of recurrence (1) holds only if p = 0.5 when p
(2n)
ii ∼ 1√

πn
. The one and two-dimensional

symmetric simple random walks are null-recurrent but the three-dimensional walk is transient!

Definition 5 The period d(i) of state i is the greatest common divisor of n such that p
(n)
ii > 0. We call

i periodic if d(i) ≥ 2 and aperiodic if d(i) = 1.
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If two states i and j communicate with each other, then

• i and j have the same period,

• i is transient iff j is transient,

• i is null-recurrent iff j is null-recurrent.

Definition 6 A chain is called irreducible if all states communicate with each other.

All states in an irreducible chain have the same period d. It is called the period of the chain. Example:
a simple random walk is periodic with period 2. Irreducible chains are classified as transient, recurrent,
positively recurrent, or null-recurrent.

Definition 7 State i is absorbing if pii = 1. More generally, C is called a closed set of states, if pij = 0
for all i ∈ C and j /∈ C.

The state space S can be partitioned uniquely as

S = T ∪ C1 ∪ C2 ∪ . . . ,

where T is the set of transient states, and the Ci are irreducible closed sets of recurrent states. If S is
finite, then at least one state is recurrent and all recurrent states are positively recurrent.
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