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Abstract

A course based on the book Probabilities and Random Processes by Geoffrey Grimmett and
David Stirzaker. Chapter 6. Markov chains (6.4-6.5, 6.8-6.9).

1 Stationary distributions

A vector of probabilities π = (πj , j ∈ S) is a stationary distribution for the Markov chain Xn, if given
X0 has distribution π, Xn has the same distribution π for any n, or in other words π is a left eigenvector
of the transition matrix

πP = π.

Theorem 1 An irreducible chain (aperiodic or periodic) has a stationary distribution π iff the chain is
positively recurrent; in this case π is the unique stationary distribution and is given by πi = 1/µi, where
µi = E(Ti|X0 = i) and Ti is the time of first return to i.

Proof∗. Let ρ(k) = (ρj(k), j ∈ S) where ρk(k) = 1 and

ρj(k) =

∞∑
n=1

P(Xn = j, Tk ≥ n|X0 = k)

is the mean number of visits of the chain to the state j between two consecutive visits to state k. Then

∑
j∈S

ρj(k) =
∑
j∈S

∞∑
n=1

P(Xn = j, Tk ≥ n|X0 = k)

=

∞∑
n=1

P(Tk ≥ n|X0 = k) = E(Tk|X0 = k) = µk.

Main steps of the proof:

1. if the chain is irreducible recurrent, then ρj(k) < ∞ for any k and j, and furthermore, ρ(k)P =
ρ(k),

2. if the chain is irreducible recurrent, there exists a positive root x of the equation xP = x, which is
unique up to a multiplicative constant; the chain is positively recurrent iff

∑
j∈S xj <∞.

Theorem 2 Let s be any state of an irreducible chain. The chain is transient iff there exists a non-zero
bounded solution (yj : j 6= s) satisfying |yj | ≤ 1 for all j to the equations

yi =
∑

j∈S\{s}

pijyj , i ∈ S\{s}. (1)

Proof∗. Main step. Let τj be the probability of no visit to s ever for a chain started at state j. Then
the vector (τj : j 6= s) satisfies (1).

Example 3 Random walk with retaining barrier. Transition probabilities

p00 = q, pi−1,i = p, pi,i−1 = q, i ≥ 1.

Let ρ = p/q.
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• If q < p, take s = 0 to see that yj = 1− ρ−j satisfies (1). The chain is transient.

• Solve the equation πP = π to find that there exists a stationary distribution, with πj = ρj(1− ρ),
if and only if q > p.

• If q > p, the chain is positively recurrent, and if q = p = 1/2, the chain is null recurrent.

Theorem 4 Ergodic theorem. For an irreducible aperiodic chain we have that

p
(n)
ij →

1

µj
as n→∞ for all (i, j).

More generally, for an aperiodic state j and any state i we have that p
(n)
ij → fij

µj
, where fij is the

probability that the chain ever visits j starting at i.

2 Reversibility

Theorem 5 Put Yn = XN−n for 0 ≤ n ≤ N where Xn is a stationary Markov chain. Then Yn is a
Markov chain with

P(Yn+1 = j|Yn = i) =
πjpji
πi

.

The chain Yn is called the time-reversal of Xn. If π exists and
πjpji
πi

= pij , the chain Xn is called
reversible (in equilibrium). The detailed balance equations

πipij = πjpji for all (i, j). (2)

Theorem 6 Consider an irreducible chain and suppose there exists a distribution π such that (2) holds.
Then π is a stationary distribution of the chain. Furthermore, the chain is reversible.

Proof. Using (2) we obtain ∑
i

πipij =
∑
i

πjpji = πj .

Example. Ehrenfest model of diffusion: flow of m particles between two connected chambers. Pick
a particle at random and move it to another chamber. Let Xn be the number of particles in the first
chamber. State space S = {0, 1, . . . ,m} and transition probabilities

pi,i+1 =
m− i
m

, pi,i−1 =
i

m
.

The detailed balance equations

πi
m− i
m

= πi+1
i+ 1

m

imply

πi =
m− i+ 1

i
πi−1 =

(
m

i

)
π0.

Using
∑
i πi = 1 we find that the stationary distribution πi =

(
m
i

)
2−n is a symmetric binomial.

3 Poisson process and continuous-time Markov chains

A Poisson process N(t) with intensity λ is the number of events observed up to time t given that the
inter-arrival times are independent exponentials with parameter λ:

P(N(t) = k) =
(λt)k

k!
e−λt, k ≥ 0.

More generally, a pure birth process X(t) with intensities {λi}∞i=0
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• holds at state i an exponential time with parameter λi,

• after the holding time it jumps up from i to i+ 1.

Exponential holding times has no memory and therefore imply the Markov property in the continuous
time setting.

Explosion: P(X(t) =∞) > 0 for a finite t. It is possible iff
∑

1/λi <∞.

Definition 7 A continuous-time process X(t) with a countable state space S satisfies the Markov prop-
erty if

P(X(tn) = j|X(t1) = i1, . . . , X(tn−1) = in−1) = P(X(tn) = j|X(tn−1) = in−1)

for any states j, i1, . . . , in−1 ∈ S and any times t1 < . . . < tn.

In the time homogeneous case compared to the discrete time case instead of transition matrices Pn with

elements p
(n)
ij we have transition matrices Pt with elements

pij(t) = P(X(u+ t) = j|X(u) = i).

Chapman-Kolmogorov: Pt+s = PtPs for all t ≥ 0 and s ≥ 0. Here P0 = I is the identity matrix.

Example. For the Poisson process we have

pij(t) =
(λt)j−i

(j − i)!
e−λt

and ∑
k

pik(t)pkj(s) =
∑
k

(λt)k−i

(k − i)!
e−λt

(λs)j−k

(j − k)!
e−λs =

(λt+ λs)j−i

(j − i)!
e−λ(t+s) = pij(t+ s).

4 The generator of a continuous-time Markov chain

A generator G = (gij) is a matrix with non-negative off-diagonal elements such that
∑
j gij = 0. A

Markov chain X(t) with generator G

• holds at state i an exponential time with parameter λi = −gii,

• after the holding time it jumps from i to j 6= i with probability hij =
gij
λi

.

The embedded discrete Markov chain is governed by transition matrix H = (hij) satisfying hii = 0. A
continuous-time MC is a discrete MC plus holding intensities (λi).

Example. The Poisson process and birth process have the same embedded MC with hi,i+1 = 1. For
the birth process gii = −λi, gi,i+1 = λi and all other gij = 0.

Kolmogorov equations. Forward equation: for any i, j ∈ S

p′ij(t) =
∑
k

pik(t)gkj

or in the matrix form P′t = PtG. It is obtained from Pt+ε − Pt = Pt(Pε − P0) watching for the last
change. Backward equation P′t = GPt is obtained from Pt+ε − Pt = (Pε − P0)Pt watching for the
initial change. These equations often have a unique solution

Pt = etG :=

∞∑
n=0

tn

n!
Gn.

Theorem 8 Stationary distribution: πPt = π for all t iff (a counterpart of the discrete time equation
πP = π)

πG = 0.
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Proof:

πPt
∀t
= π ⇔

∞∑
n=0

tn

n!
πGn ∀t= π ⇔

∞∑
n=1

tn

n!
πGn ∀t= 0 ⇔ πGn ∀n= 0.

Example. Check that the birth process has no stationary distribution.

Theorem 9 Let X(t) be irreducible with generator G. If there exists a stationary distribution π, then
it is unique and for all (i, j)

pij(t)→ πj , t→∞.

If there is no stationary distribution, then pij(t)→ 0 as t→∞.

Example. Poisson process holding times λi = λ. Then G = λ(H− I) and Pt = eλt(H−I).
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