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Abstract

A course based on the book Probabilities and Random Processes by Geoffrey Grimmett and
David Stirzaker. Chapter 6. Markov chains (6.4-6.5, 6.8-6.9).

1 Stationary distributions

A vector of probabilities m = (7,7 € §) is a stationary distribution for the Markov chain X, if given
Xy has distribution 7, X, has the same distribution 7 for any n, or in other words 7 is a left eigenvector
of the transition matrix

7P =m.

Theorem 1 An irreducible chain (aperiodic or periodic) has a stationary distribution 7 iff the chain is
positively recurrent; in this case 7 is the unique stationary distribution and is given by m; = 1/p;, where
w; = E(T;|Xo = i) and T; is the time of first return to .

Proof*. Let p(k) = (p;(k),j € S) where pr(k) =1 and
pi(k) = P(Xy = j, T > n|Xo = k)
n=1

is the mean number of visits of the chain to the state j between two consecutive visits to state k. Then

ij(k:) = ZZP(Xn = j, Ty = n|Xo = k)

jeSs JjES n=1
= > P(Ti > nlXo = k) = E(Te| Xo = k) = .
n=1
Main steps of the proof:

1. if the chain is irreducible recurrent, then p;(k) < oo for any k and j, and furthermore, p(k)P =
p(k),

2. if the chain is irreducible recurrent, there exists a positive root x of the equation xP = x, which is

unique up to a multiplicative constant; the chain is positively recurrent iff jes Tj < 00.

Theorem 2 Let s be any state of an irreducible chain. The chain is transient iff there exists a non-zero
bounded solution (y; : j # s) satisfying |y;| <1 for all j to the equations

Yi = Z pijy;, i€ S\{s}. (1)

jeS\{s}

Proof*. Main step. Let 7; be the probability of no visit to s ever for a chain started at state j. Then
the vector (7; : j # s) satisfies (1).

Example 3 Random walk with retaining barrier. Transition probabilities
Poo =¢q, Pi-1,i=Ds DPii-1=¢, =1

Let p=p/q.



o If ¢ < p, take s = 0 to see that y; =1 — p~7 satisfies (1). The chain is transient.

e Solve the equation P = 7 to find that there exists a stationary distribution, with 7; = P (1—p),
if and only if ¢ > p.

e If ¢ > p, the chain is positively recurrent, and if ¢ = p = 1/2, the chain is null recurrent.
Theorem 4 FErgodic theorem. For an irreducible aperiodic chain we have that

1
pz(.?) — — asn — oo for all (4,7).

M

More generally, for an aperiodic state j and any state i we have that pl(-;-l) — %, where fi; is the
J

probability that the chain ever visits j starting at i.

2 Reversibility

Theorem 5 Put Y, = Xy_, for 0 < n < N where X,, is a stationary Markov chain. Then Y, is a

Markov chain with
TjPji

T

P(Ypyr = j|Y, = i) =

The chain Y,, is called the time-reversal of X,,. If 7 exists and 7””# = p;j, the chain X, is called
reversible (in equilibrium). The detailed balance equations

mipij = mipy; for all (i, 7). (2)

Theorem 6 Consider an irreducible chain and suppose there exists a distribution  such that (2) holds.
Then 7 is a stationary distribution of the chain. Furthermore, the chain is reversible.

Proof. Using (2) we obtain

E Wipijzg TiPji = Tj-
i i

Example. Ehrenfest model of diffusion: flow of m particles between two connected chambers. Pick
a particle at random and move it to another chamber. Let X,, be the number of particles in the first

chamber. State space S = {0,1,...,m} and transition probabilities
m—1 )

Diji+1 = ) Diji—1 = —.

m m

The detailed balance equations

m—1 i+ 1
= Ti4+1

i
m
imply
m—1+1 m
M= ————mi-1= | . |mo.

Using >, m; = 1 we find that the stationary distribution m; = (T)2_" is a symmetric binomial.

3 Poisson process and continuous-time Markov chains

A Poisson process N(t) with intensity A is the number of events observed up to time ¢ given that the
inter-arrival times are independent exponentials with parameter \:

P(N(t) = k) = (A;)ke*”, k> 0.

More generally, a pure birth process X () with intensities {A;}5°,



e holds at state ¢ an exponential time with parameter \;,

e after the holding time it jumps up from ¢ to ¢ + 1.
Exponential holding times has no memory and therefore imply the Markov property in the continuous
time setting.
Explosion: P(X (t) = co) > 0 for a finite ¢. It is possible iff Y 1/A\; < oc.

Definition 7 A continuous-time process X (t) with a countable state space S satisfies the Markov prop-

erty if
P(X(tn) = jIX(t1) = i1, ..., X(tno1) = in—1) = P(X(tn) = jIX(tn-1) = in-1)

for any states j,i1,...,in—1 € S and any times t1 < ... < ty.

In the time homogeneous case compared to the discrete time case instead of transition matrices P™ with

elements p(@)

;; we have transition matrices Py with elements

pij(t) = P(X(u+1t) = j|X (u) = 2).

Chapman-Kolmogorov: Py, = PP, for all t > 0 and s > 0. Here Py = I is the identity matrix.

Example. For the Poisson process we have

pij(t) =

and

_ (/\t)k_i — t()‘s)j_k —As __ (/\t—i_/\s)j_i —A(t+s) _ ..
zk:pik(t)pkj(s) = zk: (kfi)!e A (j—k)!e A = We Ale+e) =pij(t+s).

4 The generator of a continuous-time Markov chain
A generator G = (g;;) is a matrix with non-negative off-diagonal elements such that ;95 = 0. A

Markov chain X (¢) with generator G

e holds at state i an exponential time with parameter \; = —g;;,

9ij
i S

e after the holding time it jumps from 4 to j # ¢ with probability h;; =

The embedded discrete Markov chain is governed by transition matrix H = (h;;) satisfying h;; = 0. A
continuous-time MC is a discrete MC plus holding intensities (A;).

Example. The Poisson process and birth process have the same embedded MC with h;;4+; = 1. For
the birth process g;; = —\;, gii+1 = A; and all other g;; = 0.

Kolmogorov equations. Forward equation: for any i,j € .S
P () = pik(t)gr;
k

or in the matrix form P} = P;G. It is obtained from P, — Py = P(P. — Pg) watching for the last
change. Backward equation P, = GP; is obtained from Py, — Py = (P. — Po)P; watching for the
initial change. These equations often have a unique solution

X in

P, = ¢!¢ = —G".

o n!
Theorem 8 Stationary distribution: wPy = m for all t iff (a counterpart of the discrete time equation
P =mx)

G =0.



Proof:

v o 1" v N v v
t ¢ t
P, =7 < g —'WG” =7 < E —'WG" Z0 < =wG"Zo.
n! n!
n=0 n=1

Example. Check that the birth process has no stationary distribution.

Theorem 9 Let X (t) be irreducible with generator G. If there exists a stationary distribution 7, then
it is unique and for all (i,7)
pij(t)—wrj, t — 0.

If there is no stationary distribution, then p;;(t) — 0 ast — oo.

Example. Poisson process holding times A\; = A\. Then G = A\(H — I) and P; = eMH-D,



