Lecture 4

Last updated by Serik Sagitov: November 22, 2012

Abstract

A course based on the book Probabilities and Random Processes by Geoffrey Grimmett and David Stirzaker. Chapter 6. Markov chains (6.4-6.5, 6.8-6.9).

1 Stationary distributions

A vector of probabilities $\boldsymbol{\pi}=\left(\pi_{j}, j \in S\right)$ is a stationary distribution for the Markov chain X_{n}, if given X_{0} has distribution $\boldsymbol{\pi}, X_{n}$ has the same distribution $\boldsymbol{\pi}$ for any n, or in other words $\boldsymbol{\pi}$ is a left eigenvector of the transition matrix

$$
\pi \mathbf{P}=\pi
$$

Theorem 1 An irreducible chain (aperiodic or periodic) has a stationary distribution $\boldsymbol{\pi}$ iff the chain is positively recurrent; in this case $\boldsymbol{\pi}$ is the unique stationary distribution and is given by $\pi_{i}=1 / \mu_{i}$, where $\mu_{i}=\mathbb{E}\left(T_{i} \mid X_{0}=i\right)$ and T_{i} is the time of first return to i.

Proof*. Let $\boldsymbol{\rho}(k)=\left(\rho_{j}(k), j \in S\right)$ where $\rho_{k}(k)=1$ and

$$
\rho_{j}(k)=\sum_{n=1}^{\infty} \mathbb{P}\left(X_{n}=j, T_{k} \geq n \mid X_{0}=k\right)
$$

is the mean number of visits of the chain to the state j between two consecutive visits to state k. Then

$$
\begin{aligned}
\sum_{j \in S} \rho_{j}(k) & =\sum_{j \in S} \sum_{n=1}^{\infty} \mathbb{P}\left(X_{n}=j, T_{k} \geq n \mid X_{0}=k\right) \\
& =\sum_{n=1}^{\infty} \mathbb{P}\left(T_{k} \geq n \mid X_{0}=k\right)=\mathbb{E}\left(T_{k} \mid X_{0}=k\right)=\mu_{k}
\end{aligned}
$$

Main steps of the proof:

1. if the chain is irreducible recurrent, then $\rho_{j}(k)<\infty$ for any k and j, and furthermore, $\boldsymbol{\rho}(k) \mathbf{P}=$ $\boldsymbol{\rho}(k)$,
2. if the chain is irreducible recurrent, there exists a positive root \mathbf{x} of the equation $\mathbf{x P}=\mathbf{x}$, which is unique up to a multiplicative constant; the chain is positively recurrent iff $\sum_{j \in S} x_{j}<\infty$.

Theorem 2 Let s be any state of an irreducible chain. The chain is transient iff there exists a non-zero bounded solution $\left(y_{j}: j \neq s\right)$ satisfying $\left|y_{j}\right| \leq 1$ for all j to the equations

$$
\begin{equation*}
y_{i}=\sum_{j \in S \backslash\{s\}} p_{i j} y_{j}, \quad i \in S \backslash\{s\} . \tag{1}
\end{equation*}
$$

Proof*. Main step. Let τ_{j} be the probability of no visit to s ever for a chain started at state j. Then the vector $\left(\tau_{j}: j \neq s\right)$ satisfies (1).

Example 3 Random walk with retaining barrier. Transition probabilities

$$
p_{00}=q, \quad p_{i-1, i}=p, \quad p_{i, i-1}=q, \quad i \geq 1
$$

Let $\rho=p / q$.

- If $q<p$, take $s=0$ to see that $y_{j}=1-\rho^{-j}$ satisfies (1). The chain is transient.
- Solve the equation $\boldsymbol{\pi} \mathbf{P}=\boldsymbol{\pi}$ to find that there exists a stationary distribution, with $\pi_{j}=\rho^{j}(1-\rho)$, if and only if $q>p$.
- If $q>p$, the chain is positively recurrent, and if $q=p=1 / 2$, the chain is null recurrent.

Theorem 4 Ergodic theorem. For an irreducible aperiodic chain we have that

$$
p_{i j}^{(n)} \rightarrow \frac{1}{\mu_{j}} \text { as } n \rightarrow \infty \text { for all }(i, j)
$$

More generally, for an aperiodic state j and any state i we have that $p_{i j}^{(n)} \rightarrow \frac{f_{i j}}{\mu_{j}}$, where $f_{i j}$ is the probability that the chain ever visits j starting at i.

2 Reversibility

Theorem 5 Put $Y_{n}=X_{N-n}$ for $0 \leq n \leq N$ where X_{n} is a stationary Markov chain. Then Y_{n} is a Markov chain with

$$
\mathbb{P}\left(Y_{n+1}=j \mid Y_{n}=i\right)=\frac{\pi_{j} p_{j i}}{\pi_{i}}
$$

The chain Y_{n} is called the time-reversal of X_{n}. If $\boldsymbol{\pi}$ exists and $\frac{\pi_{j} p_{j i}}{\pi_{i}}=p_{i j}$, the chain X_{n} is called reversible (in equilibrium). The detailed balance equations

$$
\begin{equation*}
\pi_{i} p_{i j}=\pi_{j} p_{j i} \text { for all }(i, j) \tag{2}
\end{equation*}
$$

Theorem 6 Consider an irreducible chain and suppose there exists a distribution $\boldsymbol{\pi}$ such that (2) holds. Then $\boldsymbol{\pi}$ is a stationary distribution of the chain. Furthermore, the chain is reversible.

Proof. Using (2) we obtain

$$
\sum_{i} \pi_{i} p_{i j}=\sum_{i} \pi_{j} p_{j i}=\pi_{j} .
$$

Example. Ehrenfest model of diffusion: flow of m particles between two connected chambers. Pick a particle at random and move it to another chamber. Let X_{n} be the number of particles in the first chamber. State space $S=\{0,1, \ldots, m\}$ and transition probabilities

$$
p_{i, i+1}=\frac{m-i}{m}, \quad p_{i, i-1}=\frac{i}{m}
$$

The detailed balance equations

$$
\pi_{i} \frac{m-i}{m}=\pi_{i+1} \frac{i+1}{m}
$$

imply

$$
\pi_{i}=\frac{m-i+1}{i} \pi_{i-1}=\binom{m}{i} \pi_{0} .
$$

Using $\sum_{i} \pi_{i}=1$ we find that the stationary distribution $\pi_{i}=\binom{m}{i} 2^{-n}$ is a symmetric binomial.

3 Poisson process and continuous-time Markov chains

A Poisson process $N(t)$ with intensity λ is the number of events observed up to time t given that the inter-arrival times are independent exponentials with parameter λ :

$$
\mathbb{P}(N(t)=k)=\frac{(\lambda t)^{k}}{k!} e^{-\lambda t}, \quad k \geq 0
$$

More generally, a pure birth process $X(t)$ with intensities $\left\{\lambda_{i}\right\}_{i=0}^{\infty}$

- holds at state i an exponential time with parameter λ_{i},
- after the holding time it jumps up from i to $i+1$.

Exponential holding times has no memory and therefore imply the Markov property in the continuous time setting.

Explosion: $\mathbb{P}(X(t)=\infty)>0$ for a finite t. It is possible iff $\sum 1 / \lambda_{i}<\infty$.
Definition 7 A continuous-time process $X(t)$ with a countable state space S satisfies the Markov property if

$$
\mathbb{P}\left(X\left(t_{n}\right)=j \mid X\left(t_{1}\right)=i_{1}, \ldots, X\left(t_{n-1}\right)=i_{n-1}\right)=\mathbb{P}\left(X\left(t_{n}\right)=j \mid X\left(t_{n-1}\right)=i_{n-1}\right)
$$

for any states $j, i_{1}, \ldots, i_{n-1} \in S$ and any times $t_{1}<\ldots<t_{n}$.
In the time homogeneous case compared to the discrete time case instead of transition matrices \mathbf{P}^{n} with elements $p_{i j}^{(n)}$ we have transition matrices \mathbf{P}_{t} with elements

$$
p_{i j}(t)=\mathbb{P}(X(u+t)=j \mid X(u)=i)
$$

Chapman-Kolmogorov: $\mathbf{P}_{t+s}=\mathbf{P}_{t} \mathbf{P}_{s}$ for all $t \geq 0$ and $s \geq 0$. Here $\mathbf{P}_{0}=\mathbf{I}$ is the identity matrix.
Example. For the Poisson process we have

$$
p_{i j}(t)=\frac{(\lambda t)^{j-i}}{(j-i)!} e^{-\lambda t}
$$

and

$$
\sum_{k} p_{i k}(t) p_{k j}(s)=\sum_{k} \frac{(\lambda t)^{k-i}}{(k-i)!} e^{-\lambda t} \frac{(\lambda s)^{j-k}}{(j-k)!} e^{-\lambda s}=\frac{(\lambda t+\lambda s)^{j-i}}{(j-i)!} e^{-\lambda(t+s)}=p_{i j}(t+s)
$$

4 The generator of a continuous-time Markov chain

A generator $\mathbf{G}=\left(g_{i j}\right)$ is a matrix with non-negative off-diagonal elements such that $\sum_{j} g_{i j}=0$. A Markov chain $X(t)$ with generator \mathbf{G}

- holds at state i an exponential time with parameter $\lambda_{i}=-g_{i i}$,
- after the holding time it jumps from i to $j \neq i$ with probability $h_{i j}=\frac{g_{i j}}{\lambda_{i}}$.

The embedded discrete Markov chain is governed by transition matrix $\mathbf{H}=\left(h_{i j}\right)$ satisfying $h_{i i}=0$. A continuous-time MC is a discrete MC plus holding intensities $\left(\lambda_{i}\right)$.

Example. The Poisson process and birth process have the same embedded MC with $h_{i, i+1}=1$. For the birth process $g_{i i}=-\lambda_{i}, g_{i, i+1}=\lambda_{i}$ and all other $g_{i j}=0$.

Kolmogorov equations. Forward equation: for any $i, j \in S$

$$
p_{i j}^{\prime}(t)=\sum_{k} p_{i k}(t) g_{k j}
$$

or in the matrix form $\mathbf{P}_{t}^{\prime}=\mathbf{P}_{t} \mathbf{G}$. It is obtained from $\mathbf{P}_{t+\epsilon}-\mathbf{P}_{t}=\mathbf{P}_{t}\left(\mathbf{P}_{\epsilon}-\mathbf{P}_{0}\right)$ watching for the last change. Backward equation $\mathbf{P}_{t}^{\prime}=\mathbf{G} \mathbf{P}_{t}$ is obtained from $\mathbf{P}_{t+\epsilon}-\mathbf{P}_{t}=\left(\mathbf{P}_{\epsilon}-\mathbf{P}_{0}\right) \mathbf{P}_{t}$ watching for the initial change. These equations often have a unique solution

$$
\mathbf{P}_{t}=e^{t \mathbf{G}}:=\sum_{n=0}^{\infty} \frac{t^{n}}{n!} \mathbf{G}^{n}
$$

Theorem 8 Stationary distribution: $\boldsymbol{\pi} \mathbf{P}_{t}=\boldsymbol{\pi}$ for all t iff (a counterpart of the discrete time equation $\pi \mathrm{P}=\pi$)

$$
\boldsymbol{\pi} \mathrm{G}=\mathbf{0}
$$

Proof:

$$
\boldsymbol{\pi} \mathbf{P}_{t} \stackrel{\forall t}{=} \boldsymbol{\pi} \quad \Leftrightarrow \quad \sum_{n=0}^{\infty} \frac{t^{n}}{n!} \boldsymbol{\pi} \mathbf{G}^{n} \stackrel{\forall t}{=} \boldsymbol{\pi} \quad \Leftrightarrow \quad \sum_{n=1}^{\infty} \frac{t^{n}}{n!} \boldsymbol{\pi} \mathbf{G}^{n} \stackrel{\forall t}{=} \mathbf{0} \quad \Leftrightarrow \quad \pi \mathbf{G}^{n} \stackrel{\forall n}{=} \mathbf{0} .
$$

Example. Check that the birth process has no stationary distribution.
Theorem 9 Let $X(t)$ be irreducible with generator \mathbf{G}. If there exists a stationary distribution $\boldsymbol{\pi}$, then it is unique and for all (i, j)

$$
p_{i j}(t) \rightarrow \pi_{j}, \quad t \rightarrow \infty .
$$

If there is no stationary distribution, then $p_{i j}(t) \rightarrow 0$ as $t \rightarrow \infty$.
Example. Poisson process holding times $\lambda_{i}=\lambda$. Then $\mathbf{G}=\lambda(\mathbf{H}-\mathbf{I})$ and $\mathbf{P}_{t}=e^{\lambda t(\mathbf{H}-\mathbf{I})}$.

