Lecture 5

Last updated by Serik Sagitov: November 23, 2012

Abstract

A course based on the book Probabilities and Random Processes by Geoffrey Grimmett and David Stirzaker. Chapter 7.1-7.3. Convergence of random variables.

1 Modes of convergence

Theorem 1 If X_{1}, X_{2}, \ldots are random variables defined on the same probability space, then so are

$$
\inf _{n} X_{n}, \quad \sup _{n} X_{n}, \quad \underset{n}{\liminf } X_{n}, \quad \underset{n}{\lim \sup } X_{n} .
$$

Proof. For any real x

$$
\left\{\omega: \inf _{n} X_{n} \leq x\right\}=\bigcup_{n}\left\{\omega: X_{n} \leq x\right\} \in \mathcal{F}, \quad\left\{\omega: \sup _{n} X_{n} \leq x\right\}=\bigcap_{n}\left\{\omega: X_{n} \leq x\right\} \in \mathcal{F} .
$$

It remains to observe that

$$
\liminf _{n} X_{n}=\sup _{n} \inf _{m \geq n} X_{m}, \quad \limsup X_{n}=\inf _{n} \sup _{m \geq n} X_{m}
$$

Definition 2 Let X, X_{1}, X_{2}, \ldots be random variables on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Define four modes of convergence of random variables

- almost sure convergence $X_{n} \xrightarrow{\text { a.s. }} X$, if $\mathbb{P}\left(\omega: \lim X_{n}=X\right)=1$,
- convergence in r-th mean $X_{n} \xrightarrow{L^{r}} X$ for a given $r \geq 1$, if $\mathbb{E}\left|X_{n}^{r}\right|<\infty$ for all n and

$$
\mathbb{E}\left(\left|X_{n}-X\right|^{r}\right) \rightarrow 0
$$

- convergence in probability $X_{n} \xrightarrow{\mathrm{P}} X$, if for all positive ϵ

$$
\begin{equation*}
\mathbb{P}\left(\left|X_{n}-X\right|>\epsilon\right) \rightarrow 0 \tag{1}
\end{equation*}
$$

- convergence in distribution $X_{n} \xrightarrow{d} X$ (does not require a common probability space), if

$$
\mathbb{P}\left(X_{n} \leq x\right) \rightarrow \mathbb{P}(X \leq x) \text { for all } x \text { such that } \mathbb{P}(X=x)=0
$$

Theorem 3 Let $q \geq r \geq 1$ and c be a constant. The following implications hold

$$
\begin{aligned}
X_{n} \xrightarrow{L^{q}} X \Rightarrow \quad & X_{n} \xrightarrow{\text { a.s. }} X \Rightarrow \quad X_{n} \xrightarrow{\mathrm{P}} X \Rightarrow \quad X_{n} \xrightarrow{d} X, \\
& X_{n} \xrightarrow{d} c \Rightarrow X_{n} \xrightarrow{\mathrm{P}} c .
\end{aligned}
$$

Moreover, under additional conditions

$$
X_{n} \xrightarrow{\mathrm{P}} X \Rightarrow \begin{aligned}
& X_{n} \xrightarrow{L^{r}} X \\
& X_{n} \xrightarrow{\text { a.s. }} X
\end{aligned} .
$$

Here for the convergence in mean it is required that $\mathbb{P}\left(\left|X_{n}\right| \leq a\right)=1$ for all n and some positive constant a. For the almost sure convergence it is required that (1) is strengthened as

$$
\begin{equation*}
\sum_{n} \mathbb{P}\left(\left|X_{n}-X\right|>\epsilon\right)<\infty \text { for any } \epsilon>0 \tag{2}
\end{equation*}
$$

It follows that

$$
X_{n} \xrightarrow{\mathrm{P}} X \Rightarrow X_{n^{\prime}} \xrightarrow{\text { a.s. }} X \text { along a subsequence. }
$$

The implication "convergence in mean \Rightarrow convergence in probability" follows from the Markov inequality:

$$
\mathbb{P}(|X|>\epsilon) \leq \frac{\mathbb{E}(|X|)}{\epsilon} \text { for any } \epsilon>0
$$

The implication " $(2) \Rightarrow$ convergence a.s." follows from the first Borel-Cantelli lemma. Indeed, put $A_{n}=\left\{\left|X_{n}-X\right|>1 / m\right\}$ and $B_{m}=\left\{A_{n}\right.$ i.o. $\}$. Observe that $\left\{\omega: \lim X_{n} \neq X\right\}=\sup _{m} B_{m}$ and due to the Borel-Cantelli lemma $\mathbb{P}\left(B_{m}\right)=0$.

2 Borel-Cantelli lemmas

Given a sequence of random events A_{1}, A_{2}, \ldots define new events

$$
\begin{aligned}
\sup _{n} A_{n} & =\bigcup_{n} A_{n}, & \inf _{n} A_{n} & =\bigcap_{n} A_{n}, \\
\limsup _{n \rightarrow \infty} A_{n} & =\bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_{m}, & \liminf _{n \rightarrow \infty} A_{n} & =\bigcup_{n=1}^{\infty} \bigcap_{m=n}^{\infty} A_{m} .
\end{aligned}
$$

Observe that
$A=\limsup _{n \rightarrow \infty} A_{n}=\bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_{m}=\left\{\forall n \exists m \geq n\right.$ such that A_{m} occurs $\}=\left\{\right.$ events A_{m} occur infinitely often $\}$ and
$A^{c}=\liminf _{n \rightarrow \infty} A_{n}^{c}=\bigcup_{n=1}^{\infty} \bigcap_{m=n}^{\infty} A_{m}^{c}=\left\{\exists n\right.$ such that A_{m}^{c} occur $\left.\forall m \geq n\right\}=\left\{\right.$ events A_{m} occur finitely often $\}$.
Theorem 4 Borel-Cantelli lemmas. Let $A=\left\{\right.$ infinitely many of random events A_{1}, A_{2}, \ldots occur $\}$.

1. If $\sum_{n=1}^{\infty} P\left(A_{n}\right)<\infty$, then $P(A)=0$,
2. If $\sum_{n=1}^{\infty} P\left(A_{n}\right)=\infty$ and events A_{1}, A_{2}, \ldots are independent, then $P(A)=1$.

3 Counterexamples

Let $\Omega=[0,2]$ and put $A_{n}=\left[a_{n}, a_{n+1}\right]$, where a_{n} is the fractional part of $1+1 / 2+\ldots+1 / n$.

- The random variables $I_{A_{n}}$ converge to zero in mean (and therefore in probability) but not a.s.
- The random variables $n I_{A_{n}}$ converge to zero in probability but not in mean and not a.s.
- $\mathbb{P}\left(A_{n}\right.$ i.o. $)=0.5$ and $\sum_{n} \mathbb{P}\left(A_{n}\right)=\infty$.

Let $\Omega=[0,1]$ and put $B_{n}=[0,1 / n]$.

- The random variables $n I_{B_{n}}$ converge to zero a.s but not in mean.
- Put $X_{2 n}=I_{B_{2}}$ and $X_{2 n+1}=1-X_{2 n}$. The random variables X_{n} converge to $I_{B_{2}}$ in distribution but not in probability. The random variables X_{n} converge in distribution to $1-I_{B_{2}}$ as well.
- Both $X_{2 n}=I_{B_{2}}$ and $X_{2 n+1}=1-X_{2 n}$ converge to $I_{B_{2}}$ in distribution but their sum does not converge to $2 I_{B_{2}}$.

4 Continuity of expectation

Lemma 5 (Fatou) If almost surely $X_{n} \geq 0$, then

$$
\mathbb{E}\left(\liminf X_{n}\right) \leq \liminf \mathbb{E}\left(X_{n}\right) \leq \lim \sup \mathbb{E}\left(X_{n}\right) \leq \mathbb{E}\left(\lim \sup X_{n}\right)
$$

In particular, applying this to $X_{n}=I_{\left\{A_{n}\right\}}$ we get

$$
\mathbb{P}\left(\liminf A_{n}\right) \leq \liminf \mathbb{P}\left(A_{n}\right) \leq \limsup \mathbb{P}\left(A_{n}\right) \leq \mathbb{P}\left(\lim \sup A_{n}\right)
$$

Theorem 6 Dominated convergence. If $X_{n} \xrightarrow{\text { a.s. }} X$ and almost surely $\left|X_{n}\right| \leq Y$ and $\mathbb{E} Y<\infty$, then $\mathbb{E}|X|<\infty$ and $\mathbb{E} X_{n} \rightarrow \mathbb{E} X$.

Bounded convergence theorem: if almost surely $\left|X_{n}\right| \leq c$ for some constant c.

