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Abstract

A course based on the book Probability and Random Processes by Geoffrey Grimmett and David
Stirzaker. Chapter 7.4-7.9. Convergence of random variables. Chapter 8. Random processes.

1 Inequalities

Jensen’s inequality. Given a convex function J(x) and a random variable X with mean µ we have

E(J(X)) ≥ J(µ).

Proof. Due to convexity there is λ such that J(x) ≥ J(µ) + λ(x− µ). Thus

E(J(X)) ≥ E(J(µ) + λ(X − µ)) = J(µ).

Markov’s inequality. For any random variable X and a > 0

P(|X| > a) ≤ E|X|
a

.

Proof:
E|X| ≥ E(|X|I{|X|>a}) ≥ aE(I{|X|>a}) = aP(|X| > a).

Chebyshev’s inequality. Given a random variable X with mean µ and variance σ2 for any ε > 0 we
have

P(|X − µ| > ε) ≤ σ2

ε2
.

Proof:

P(|X − µ| > ε) = P((X − µ)2 > ε2) ≤ E((X − µ)2)

ε2
.

Cauchy-Schwartz’s inequality: for r.v. X and Y(
E(XY )

)2 ≤ E(X2)E(Y 2)

with equality if only if aX + bY = 1 a.s. for some non-trivial pair of constants (a, b).
Hölder’s inequality. If p, q > 1 and p−1 + q−1 = 1, then

E|XY | ≤
(
E|Xp|

)1/p(E|Y q|)1/q.
Minkowski’s inequality. Triangle inequality. If p ≥ 1, then(

E|X + Y |p
)1/p ≤ (E|Xp|

)1/p
+
(
E|Y p|

)1/p
.

Kolmogorov’s inequality. Let {Xn} be iid with zero means and variances σ2
n. Then for any ε > 0

P( max
1≤i≤n

|X1 + . . .+Xi| > ε) ≤ σ2
1 + . . .+ σ2

n

ε2
.

Doob-Kolmogorov’s inequality. If {Sn} is a martingale, then for any ε > 0

P( max
1≤i≤n

|Si| > ε) ≤ E(S2
n)

ε2
.
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2 Strong LLN

Theorem 1 Let X1, X2, . . . be iid random variables defined on the same probability space with mean µ
and finite second moment. Then

X1 + . . .+Xn

n

L2

→ µ.

Proof. Since σ2 := E(X2
1 )− µ2 <∞, we have

E

((
X1 + . . .+Xn

n
− µ

)2
)

= Var
(
X1 + . . .+Xn

n

)
=
nσ2

n2
→ 0.

Theorem 2 Strong LLN. Let X1, X2, . . . be iid random variables defined on the same probability space.
Then

X1 + . . .+Xn

n

a.s.→ µ

for some constant µ iff E|X1| <∞. In this case µ = EX1 and X1+...+Xn

n

L1

→ µ.

There are cases when convergence in probability holds but not a.s. In those cases of course E|X1| =∞.

Theorem 3 The law of the iterated logarithm. Let X1, X2, . . . be iid random variables with mean 0 and
variance 1. Then

P
(

lim sup
n→∞

X1 + . . .+Xn√
2n log log n

= 1

)
= 1

and

P
(

liminf
n→∞

X1 + . . .+Xn√
2n log logn

= −1

)
= 1.

Proof∗. The second assertion follows from the first one after applying it to −Xi. The proof of the first
part is difficult. One has to show that the events

An(c) = {X1 + . . .+Xn ≥ c
√

2n log log n}

occur for infinitely many values of n if c < 1 and for only finitely many values of n if c > 1.

3 Martingales

Martingale: a betting strategy. Let Xn be the gain of a gambler doubling the bet after each loss. The
game stops after the first win.

• X0 = 0

• X1 = 1 with probability 1/2 and X1 = −1 with probability 1/2,

• X2 = 1 with probability 3/4 and X2 = −3 with probability 1/4,

• X3 = 1 with probability 7/8 and X3 = −7 with probability 1/8, . . . ,

• Xn = 1 with probability 1− 2−n and Xn = −2n + 1 with probability 2−n.

Conditional expectation

E(Xn+1|Xn) = (2Xn − 1)
1

2
+ (1)

1

2
= Xn.

If N is the number of games, then P(N = n) = 2−n, n = 1, 2, . . . with E(N) = 2 and

E(XN−1) = E(1− 2N−1) = 1−
∞∑
n=1

2n−12−n = −∞.
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Definition 4 The sequence {Sn}n≥1 is a martingale with respect to the sequence {Xn}n≥1, if for all
n ≥ 1

• E|Sn| <∞,

• E(Sn+1|X1, . . . , Xn) = Sn.

It follows that Sn = ψn(X1, . . . , Xn). We sometimes just say that {Sn}n≥1 is a martingale.

A submartingale. If {Sn}n≥1 is a martingale, then Sn+1 − Sn and Sn are uncorrelated since

E(Sn(Sn+1 − Sn)|X1, . . . , Xn) = 0.

It follows that {S2
n}n≥1 is a submartingale

E(S2
n+1|X1, . . . , Xn) = E((Sn+1 − Sn)2 + 2Sn(Sn+1 − Sn) + S2

n|X1, . . . , Xn)

= E((Sn+1 − Sn)2|X1, . . . , Xn) + S2
n ≥ S2

n.

We have

E(S2
n+1) = E(S2

n) + E((Sn+1 − Sn)2)

so that E(S2
n) is non-decreasing and there always exists a finite or infinite limit

M = lim
n→∞

E(S2
n). (1)

More generally due to the Jensen inequality: if {Sn}n≥1 is a martingale and J(x) is convex, then
{J(Sn)}n≥1 is a submartingale.

Example. A simple random walk Sn = X1 + . . .+Xn with P(Xi = 1) = p and P(Xi = −1) = q. In the
symmetric case p = q

• Sn is a martingale: E(Sn+1|X1, . . . , Xn) = Sn + E(Xn+1) = Sn,

• S2
n−n is a martingale: E(S2

n+1−n−1|X1, . . . , Xn) = S2
n+2SnE(Xn+1)+E(X2

n+1)−n−1 = S2
n−n.

De Moivre’s martingale Dn = (q/p)Sn :

E(Dn+1|X1, . . . , Xn) = p(q/p)Sn+1 + q(q/p)Sn−1 = (q/p)Sn = Dn.

Theorem 5 If {Sn} is a martingale with finite M defined by (1), then there exists a random variable
S such that Sn → S a.s. and in mean square.

Proof∗. Step 1. Put

Am(ε) =
⋃
i≥1

{|Sm+i − Sm| ≥ ε}.

Using the Doob-Kolmogorov inequality show that P(Am(ε))→ 0 as m→∞ for any ε > 0.
Step 2. Show that the sequence {Sn} is a.s. Cauchy convergent:

P
( ⋂
ε>0

⋃
m≥1

Acm(ε)
)
→ 0

which implies the existence of S such that Sn → S a.s.
Step 3. Prove the convergence in mean square using the Fatou lemma

E((Sn − S)2) = E(liminf
m→∞

(Sn − Sm)2) ≤ liminf
m→∞

E((Sn − Sm)2)

= liminf
m→∞

E(S2
m)− E(S2

n) = M − E(S2
n)→ 0, n→∞.
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4 Predictions and conditional expectation

Definition 6 Let X and Y be random variables on (Ω,F ,P) such that E(Y 2) <∞. The best predictor
of Y given the knowledge of X is the function Ŷ = h(X) that minimizes E((Y − Ŷ )2).

Let L2(Ω,F ,P) be the set of random variables Z on (Ω,F ,P) such that E(Z2) <∞. Define a scalar
product on the linear space L2(Ω,F ,P) by 〈U, V 〉 = E(UV ) leading to the norm

‖Z‖ = 〈Z,Z〉1/2 = (E(Z2))1/2.

Let H be the subspace of L2(Ω,F ,P) of all functions of X having finite second moment

H = {h(X) : E(h(X)2) <∞}.

Geometrically, the best predictor of Y given X is the projection Ŷ of Y on H so that

E((Y − Ŷ )Z) = 0, for all Z ∈ H. (2)

Theorem 7 Let X and Y be random variables on (Ω,F ,P) such that E(Y 2) < ∞. The best predictor
of Y given X is the conditional expectation Ŷ = E(Y |X).

Proof. Put Ŷ = E(Y |X). We have due to the Jensen inequality Ŷ 2 ≤ E(Y 2|X) and therefore

E(Ŷ 2) ≤ E(E(Y 2|X)) = E(Y 2) <∞.

It remains to verify (2):

E((Y − Ŷ )Z) = E(E(Y − Ŷ )Z|Z)) = E(E(Y |X)Z − Ŷ Z) = 0.

To prove uniqueness assume that there is another predictor Ȳ with E((Y − Ȳ )2) = E((Y − Ŷ )2) = d2.

Then E((Y − Ŷ+Ȳ
2 )2) ≥ d2 and according to the parallelogram rule

2
(
‖Y − Ŷ ‖2 + ‖Y − Ȳ ‖2

)
= 4‖Y − Ŷ + Ȳ

2
‖2 + ‖Ȳ − Ŷ ‖2

we have
‖Ȳ − Ŷ ‖2 ≤ 2

(
‖Y − Ŷ ‖2 + ‖Y − Ȳ ‖2

)
− 4d2 = 0.
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