Lecture 6

Last updated by Serik Sagitov: December 3, 2012

Abstract

A course based on the book Probability and Random Processes by Geoffrey Grimmett and David Stirzaker. Chapter 7.4-7.9. Convergence of random variables. Chapter 8. Random processes.

1 Inequalities

Jensen's inequality. Given a convex function $J(x)$ and a random variable X with mean μ we have

$$
\mathbb{E}(J(X)) \geq J(\mu)
$$

Proof. Due to convexity there is λ such that $J(x) \geq J(\mu)+\lambda(x-\mu)$. Thus

$$
\mathbb{E}(J(X)) \geq \mathbb{E}(J(\mu)+\lambda(X-\mu))=J(\mu)
$$

Markov's inequality. For any random variable X and $a>0$

$$
\mathbb{P}(|X|>a) \leq \frac{\mathbb{E}|X|}{a}
$$

Proof:

$$
\mathbb{E}|X| \geq \mathbb{E}\left(|X| I_{\{|X|>a\}}\right) \geq a \mathbb{E}\left(I_{\{|X|>a\}}\right)=a \mathbb{P}(|X|>a)
$$

Chebyshev's inequality. Given a random variable X with mean μ and variance σ^{2} for any $\epsilon>0$ we have

$$
\mathbb{P}(|X-\mu|>\epsilon) \leq \frac{\sigma^{2}}{\epsilon^{2}}
$$

Proof:

$$
\mathbb{P}(|X-\mu|>\epsilon)=\mathbb{P}\left((X-\mu)^{2}>\epsilon^{2}\right) \leq \frac{\mathbb{E}\left((X-\mu)^{2}\right)}{\epsilon^{2}}
$$

Cauchy-Schwartz's inequality: for r.v. X and Y

$$
(\mathbb{E}(X Y))^{2} \leq \mathbb{E}\left(X^{2}\right) \mathbb{E}\left(Y^{2}\right)
$$

with equality if only if $a X+b Y=1$ a.s. for some non-trivial pair of constants (a, b).
Hölder's inequality. If $p, q>1$ and $p^{-1}+q^{-1}=1$, then

$$
\mathbb{E}|X Y| \leq\left(\mathbb{E}\left|X^{p}\right|\right)^{1 / p}\left(\mathbb{E}\left|Y^{q}\right|\right)^{1 / q}
$$

Minkowski's inequality. Triangle inequality. If $p \geq 1$, then

$$
\left(\mathbb{E}|X+Y|^{p}\right)^{1 / p} \leq\left(\mathbb{E}\left|X^{p}\right|\right)^{1 / p}+\left(\mathbb{E}\left|Y^{p}\right|\right)^{1 / p}
$$

Kolmogorov's inequality. Let $\left\{X_{n}\right\}$ be iid with zero means and variances σ_{n}^{2}. Then for any $\epsilon>0$

$$
\mathbb{P}\left(\max _{1 \leq i \leq n}\left|X_{1}+\ldots+X_{i}\right|>\epsilon\right) \leq \frac{\sigma_{1}^{2}+\ldots+\sigma_{n}^{2}}{\epsilon^{2}}
$$

Doob-Kolmogorov's inequality. If $\left\{S_{n}\right\}$ is a martingale, then for any $\epsilon>0$

$$
\mathbb{P}\left(\max _{1 \leq i \leq n}\left|S_{i}\right|>\epsilon\right) \leq \frac{\mathbb{E}\left(S_{n}^{2}\right)}{\epsilon^{2}}
$$

2 Strong LLN

Theorem 1 Let X_{1}, X_{2}, \ldots be iid random variables defined on the same probability space with mean μ and finite second moment. Then

$$
\frac{X_{1}+\ldots+X_{n}}{n} \xrightarrow{L^{2}} \mu .
$$

Proof. Since $\sigma^{2}:=\mathbb{E}\left(X_{1}^{2}\right)-\mu^{2}<\infty$, we have

$$
\mathbb{E}\left(\left(\frac{X_{1}+\ldots+X_{n}}{n}-\mu\right)^{2}\right)=\mathbb{V a r}\left(\frac{X_{1}+\ldots+X_{n}}{n}\right)=\frac{n \sigma^{2}}{n^{2}} \rightarrow 0
$$

Theorem 2 Strong LLN. Let X_{1}, X_{2}, \ldots be iid random variables defined on the same probability space. Then

$$
\frac{X_{1}+\ldots+X_{n}}{n} \xrightarrow{\text { a.s. }} \mu
$$

for some constant μ iff $\mathbb{E}\left|X_{1}\right|<\infty$. In this case $\mu=\mathbb{E} X_{1}$ and $\frac{X_{1}+\ldots+X_{n}}{n} \xrightarrow{L^{1}} \mu$.
There are cases when convergence in probability holds but not a.s. In those cases of course $\mathbb{E}\left|X_{1}\right|=\infty$.
Theorem 3 The law of the iterated logarithm. Let X_{1}, X_{2}, \ldots be iid random variables with mean 0 and variance 1. Then

$$
\mathbb{P}\left(\limsup _{n \rightarrow \infty} \frac{X_{1}+\ldots+X_{n}}{\sqrt{2 n \log \log n}}=1\right)=1
$$

and

$$
\mathbb{P}\left(\liminf _{n \rightarrow \infty} \frac{X_{1}+\ldots+X_{n}}{\sqrt{2 n \log \log n}}=-1\right)=1
$$

Proof*. The second assertion follows from the first one after applying it to $-X_{i}$. The proof of the first part is difficult. One has to show that the events

$$
A_{n}(c)=\left\{X_{1}+\ldots+X_{n} \geq c \sqrt{2 n \log \log n}\right\}
$$

occur for infinitely many values of n if $c<1$ and for only finitely many values of n if $c>1$.

3 Martingales

Martingale: a betting strategy. Let X_{n} be the gain of a gambler doubling the bet after each loss. The game stops after the first win.

- $X_{0}=0$
- $X_{1}=1$ with probability $1 / 2$ and $X_{1}=-1$ with probability $1 / 2$,
- $X_{2}=1$ with probability $3 / 4$ and $X_{2}=-3$ with probability $1 / 4$,
- $X_{3}=1$ with probability $7 / 8$ and $X_{3}=-7$ with probability $1 / 8, \ldots$,
- $X_{n}=1$ with probability $1-2^{-n}$ and $X_{n}=-2^{n}+1$ with probability 2^{-n}.

Conditional expectation

$$
\mathbb{E}\left(X_{n+1} \mid X_{n}\right)=\left(2 X_{n}-1\right) \frac{1}{2}+(1) \frac{1}{2}=X_{n}
$$

If N is the number of games, then $\mathbb{P}(N=n)=2^{-n}, n=1,2, \ldots$ with $\mathbb{E}(N)=2$ and

$$
\mathbb{E}\left(X_{N-1}\right)=\mathbb{E}\left(1-2^{N-1}\right)=1-\sum_{n=1}^{\infty} 2^{n-1} 2^{-n}=-\infty
$$

Definition 4 The sequence $\left\{S_{n}\right\}_{n \geq 1}$ is a martingale with respect to the sequence $\left\{X_{n}\right\}_{n \geq 1}$, if for all $n \geq 1$

- $\mathbb{E}\left|S_{n}\right|<\infty$,
- $\mathbb{E}\left(S_{n+1} \mid X_{1}, \ldots, X_{n}\right)=S_{n}$.

It follows that $S_{n}=\psi_{n}\left(X_{1}, \ldots, X_{n}\right)$. We sometimes just say that $\left\{S_{n}\right\}_{n \geq 1}$ is a martingale.
A submartingale. If $\left\{S_{n}\right\}_{n \geq 1}$ is a martingale, then $S_{n+1}-S_{n}$ and S_{n} are uncorrelated since

$$
\mathbb{E}\left(S_{n}\left(S_{n+1}-S_{n}\right) \mid X_{1}, \ldots, X_{n}\right)=0
$$

It follows that $\left\{S_{n}^{2}\right\}_{n \geq 1}$ is a submartingale

$$
\begin{aligned}
\mathbb{E}\left(S_{n+1}^{2} \mid X_{1}, \ldots, X_{n}\right) & =\mathbb{E}\left(\left(S_{n+1}-S_{n}\right)^{2}+2 S_{n}\left(S_{n+1}-S_{n}\right)+S_{n}^{2} \mid X_{1}, \ldots, X_{n}\right) \\
& =\mathbb{E}\left(\left(S_{n+1}-S_{n}\right)^{2} \mid X_{1}, \ldots, X_{n}\right)+S_{n}^{2} \geq S_{n}^{2}
\end{aligned}
$$

We have

$$
\mathbb{E}\left(S_{n+1}^{2}\right)=\mathbb{E}\left(S_{n}^{2}\right)+\mathbb{E}\left(\left(S_{n+1}-S_{n}\right)^{2}\right)
$$

so that $\mathbb{E}\left(S_{n}^{2}\right)$ is non-decreasing and there always exists a finite or infinite limit

$$
\begin{equation*}
M=\lim _{n \rightarrow \infty} \mathbb{E}\left(S_{n}^{2}\right) \tag{1}
\end{equation*}
$$

More generally due to the Jensen inequality: if $\left\{S_{n}\right\}_{n \geq 1}$ is a martingale and $J(x)$ is convex, then $\left\{J\left(S_{n}\right)\right\}_{n \geq 1}$ is a submartingale.

Example. A simple random walk $S_{n}=X_{1}+\ldots+X_{n}$ with $\mathbb{P}\left(X_{i}=1\right)=p$ and $\mathbb{P}\left(X_{i}=-1\right)=q$. In the symmetric case $p=q$

- S_{n} is a martingale: $\mathbb{E}\left(S_{n+1} \mid X_{1}, \ldots, X_{n}\right)=S_{n}+\mathbb{E}\left(X_{n+1}\right)=S_{n}$,
- $S_{n}^{2}-n$ is a martingale: $\mathbb{E}\left(S_{n+1}^{2}-n-1 \mid X_{1}, \ldots, X_{n}\right)=S_{n}^{2}+2 S_{n} \mathbb{E}\left(X_{n+1}\right)+\mathbb{E}\left(X_{n+1}^{2}\right)-n-1=S_{n}^{2}-n$.

De Moivre's martingale $D_{n}=(q / p)^{S_{n}}$:

$$
\mathbb{E}\left(D_{n+1} \mid X_{1}, \ldots, X_{n}\right)=p(q / p)^{S_{n}+1}+q(q / p)^{S_{n}-1}=(q / p)^{S_{n}}=D_{n}
$$

Theorem 5 If $\left\{S_{n}\right\}$ is a martingale with finite M defined by (1), then there exists a random variable S such that $S_{n} \rightarrow S$ a.s. and in mean square.

Proof*. Step 1. Put

$$
A_{m}(\epsilon)=\bigcup_{i \geq 1}\left\{\left|S_{m+i}-S_{m}\right| \geq \epsilon\right\}
$$

Using the Doob-Kolmogorov inequality show that $\mathbb{P}\left(A_{m}(\epsilon)\right) \rightarrow 0$ as $m \rightarrow \infty$ for any $\epsilon>0$.
Step 2. Show that the sequence $\left\{S_{n}\right\}$ is a.s. Cauchy convergent:

$$
\mathbb{P}\left(\bigcap_{\epsilon>0} \bigcup_{m \geq 1} A_{m}^{c}(\epsilon)\right) \rightarrow 0
$$

which implies the existence of S such that $S_{n} \rightarrow S$ a.s.
Step 3. Prove the convergence in mean square using the Fatou lemma

$$
\begin{aligned}
\mathbb{E}\left(\left(S_{n}-S\right)^{2}\right) & =\mathbb{E}\left(\liminf _{m \rightarrow \infty}\left(S_{n}-S_{m}\right)^{2}\right) \leq \liminf _{m \rightarrow \infty} \mathbb{E}\left(\left(S_{n}-S_{m}\right)^{2}\right) \\
& =\liminf _{m \rightarrow \infty} \mathbb{E}\left(S_{m}^{2}\right)-\mathbb{E}\left(S_{n}^{2}\right)=M-\mathbb{E}\left(S_{n}^{2}\right) \rightarrow 0, \quad n \rightarrow \infty
\end{aligned}
$$

4 Predictions and conditional expectation

Definition 6 Let X and Y be random variables on $(\Omega, \mathcal{F}, \mathbb{P})$ such that $\mathbb{E}\left(Y^{2}\right)<\infty$. The best predictor of Y given the knowledge of X is the function $\hat{Y}=h(X)$ that minimizes $\mathbb{E}\left((Y-\hat{Y})^{2}\right)$.

Let $L^{2}(\Omega, \mathcal{F}, \mathbb{P})$ be the set of random variables Z on $(\Omega, \mathcal{F}, \mathbb{P})$ such that $\mathbb{E}\left(Z^{2}\right)<\infty$. Define a scalar product on the linear space $L^{2}(\Omega, \mathcal{F}, \mathbb{P})$ by $\langle U, V\rangle=\mathbb{E}(U V)$ leading to the norm

$$
\|Z\|=\langle Z, Z\rangle^{1 / 2}=\left(\mathbb{E}\left(Z^{2}\right)\right)^{1 / 2}
$$

Let H be the subspace of $L^{2}(\Omega, \mathcal{F}, \mathbb{P})$ of all functions of X having finite second moment

$$
H=\left\{h(X): \mathbb{E}\left(h(X)^{2}\right)<\infty\right\} .
$$

Geometrically, the best predictor of Y given X is the projection \hat{Y} of Y on H so that

$$
\begin{equation*}
\mathbb{E}((Y-\hat{Y}) Z)=0, \text { for all } Z \in H \tag{2}
\end{equation*}
$$

Theorem 7 Let X and Y be random variables on $(\Omega, \mathcal{F}, \mathbb{P})$ such that $\mathbb{E}\left(Y^{2}\right)<\infty$. The best predictor of Y given X is the conditional expectation $\hat{Y}=\mathbb{E}(Y \mid X)$.

Proof. Put $\hat{Y}=\mathbb{E}(Y \mid X)$. We have due to the Jensen inequality $\hat{Y}^{2} \leq \mathbb{E}\left(Y^{2} \mid X\right)$ and therefore

$$
\mathbb{E}\left(\hat{Y}^{2}\right) \leq \mathbb{E}\left(\mathbb{E}\left(Y^{2} \mid X\right)\right)=\mathbb{E}\left(Y^{2}\right)<\infty
$$

It remains to verify (2):

$$
\mathbb{E}((Y-\hat{Y}) Z)=\mathbb{E}(\mathbb{E}(Y-\hat{Y}) Z \mid Z))=\mathbb{E}(\mathbb{E}(Y \mid X) Z-\hat{Y} Z)=0
$$

To prove uniqueness assume that there is another predictor \bar{Y} with $\mathbb{E}\left((Y-\bar{Y})^{2}\right)=\mathbb{E}\left((Y-\hat{Y})^{2}\right)=d^{2}$. Then $\mathbb{E}\left(\left(Y-\frac{\hat{Y}+\bar{Y}}{2}\right)^{2}\right) \geq d^{2}$ and according to the parallelogram rule

$$
2\left(\|Y-\hat{Y}\|^{2}+\|Y-\bar{Y}\|^{2}\right)=4\left\|Y-\frac{\hat{Y}+\bar{Y}}{2}\right\|^{2}+\|\bar{Y}-\hat{Y}\|^{2}
$$

we have

$$
\|\bar{Y}-\hat{Y}\|^{2} \leq 2\left(\|Y-\hat{Y}\|^{2}+\|Y-\bar{Y}\|^{2}\right)-4 d^{2}=0
$$

