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Abstract

A course based on the book Probability and Random Processes by Geoffrey Grimmett and David
Stirzaker. Chapter 7.4-7.9. Convergence of random variables. Chapter 8. Random processes.

1 Inequalities

Jensen’s inequality. Given a convex function J(x) and a random variable X with mean p we have
E(J(X)) = J(1).
Proof. Due to convexity there is A such that J(z) > J(u) + Az — p). Thus
E(J(X)) = B(J (1) + A(X — ) = J (1.
Markov’s inequality. For any random variable X and a > 0

E|X
P(|X|>a) < |T.

Proof:
EIX| = E(IX|I{x|>a}) = aE(I{|x|>a}) = aP(|X] > a).
Chebyshev’s inequality. Given a random variable X with mean p and variance o2 for any € > 0 we

have

o2

POX -l > < 5.

Proof:
E((X —1)?)

€2

P(X =l > €) = P((X — p)? > &) <
Cauchy-Schwartz’s inequality: for r.v. X and Y
(E(XY))” < E(X*)E(Y?)

with equality if only if aX + bY =1 a.s. for some non-trivial pair of constants (a,b).
Hoélder’s inequality. If p,¢ > 1 and p~! + ¢! = 1, then

EIXY| < (EIX?))"" (B|ye)"e.
Minkowski’s inequality. Triangle inequality. If p > 1, then
(ElX +Y?)"" < (BIX7))"” + (B]Y?))"?.

Kolmogorov’s inequality. Let {X,,} be iid with zero means and variances o2. Then for any € > 0

o+ ... +02
P(max [X;+...+ X >¢) < 1"
1<i<n €

Doob-Kolmogorov’s inequality. If {S,} is a martingale, then for any ¢ > 0

2
P( max |S;| > ¢€) < E(i’n)
1<i<n €



2 Strong LLN

Theorem 1 Let X1, X5, ... be iid random variables defined on the same probability space with mean p

and finite second moment. Then
Xi+...+ X, 12
——— S5

n

Proof. Since 02 := E(X?) — p? < o0, we have

X1 +...+ X, 2 X1 4.+ X, 2
E((M_M) >:Var<1++) _not o,
n n n

Theorem 2 Strong LLN. Let X, Xa,... be iid random variables defined on the same probability space.
Then

X1++Xn a.s.
n
1
for some constant p iff E|X1| < co. In this case p = EX; and % L I

There are cases when convergence in probability holds but not a.s. In those cases of course E|X;| = oo.

Theorem 3 The law of the iterated logarithm. Let X1, Xo, ... be iid random variables with mean 0 and

variance 1. Then x X
P ( lim sup S B 1)=1
n—oo /2nloglogn

and

P hminfmf,l -1
nseo 2nloglogn -

Proof*. The second assertion follows from the first one after applying it to —X;. The proof of the first
part is difficult. One has to show that the events

An(e) ={X1+4+ ...+ X, > c/2nloglogn}

occur for infinitely many values of n if ¢ < 1 and for only finitely many values of n if ¢ > 1.

3 Martingales

Martingale: a betting strategy. Let X,, be the gain of a gambler doubling the bet after each loss. The
game stops after the first win.

o« Xo=0

e X, =1 with probability 1/2 and X; = —1 with probability 1/2,

e X, =1 with probability 3/4 and X, = —3 with probability 1/4,

e X3 =1 with probability 7/8 and X3 = —7 with probability 1/8,...,

e X, =1 with probability 1 — 27" and X,, = —2" + 1 with probability 27.
Conditional expectation

E(X,i1]X,) = (2X, — 13 + (1)5 = Xo.

If N is the number of games, then P(N =n) =2"", n=1,2,... with E(N) = 2 and

E(Xy_1)=E(1-2"")=1-) 2"7127" = —cc.

n=1



Definition 4 The sequence {Sy}n>1 is a martingale with respect to the sequence {Xy}n>1, if for all
n>1

e E|S,| < o0,
e E(Sp+1|X1,...,X,) =S,.
It follows that S, = ¥n (X1, ..., X,). We sometimes just say that {Sy}n>1 is a martingale.
A submartingale. If {S,},>1 is a martingale, then S,,11 —S,, and S,, are uncorrelated since
E(Sn(Sn41 — Sn)[X1, ..., Xpn) = 0.
It follows that {S2},,>1 is a submartingale
E(Sni1|X1s s Xn) = E((Snt1 = Sn)? + 250 (Sns1 — Sn) + Sa| X1, .., X2)
=E((Sny1 — Sn)?|X1,..., X)) + 52 > S2.
We have
E(S711) = E(S7) + E((Snt1 — Sn)?)
so that E(S2) is non-decreasing and there always exists a finite or infinite limit

M = lim E(S?). (1)

n—oo

More generally due to the Jensen inequality: if {S,},>1 is a martingale and J(x) is convex, then
{J(Sn)}n>1 is a submartingale.

Example. A simple random walk S, = X7 +... 4+ X,, with P(X; = 1) = p and P(X; = —1) = ¢. In the
symmetric case p = ¢q

e S, is a martingale: E(Sp11|X1,...,X,) = Sp + E(Xpy1) = Sy,
e 52 —nisamartingale: E(S2,, —n—1|X1,...,X,) = S2+25,E(X,41)+E(X2, ) —n—1=52—n.

De Moivre’s martingale D,, = (q/p)°":

E(Dyny1|X1, ..., X0n) = pla/p)** ' +q(q/p)* " = (¢/p)®" = D

Theorem 5 If {S,} is a martingale with finite M defined by (1), then there exists a random variable
S such that S, — S a.s. and in mean square.

Proof*. Step 1. Put
Am(e) = U{|Sm+i — Sm| > €}

i>1

Using the Doob-Kolmogorov inequality show that P(A,,(e)) — 0 as m — oo for any € > 0.
Step 2. Show that the sequence {S,} is a.s. Cauchy convergent:

P(Q}glfﬁn(e)) -0

which implies the existence of S such that S, — S a.s.
Step 3. Prove the convergence in mean square using the Fatou lemma

E((S, — $)%) = E(liminf(S,, — S )?) < liminf E((S, — Sn)?)

m—00 m— o0
= liminf E(S2) — E(S2) = M —E(5%) =0, n — .
m— o0



4 Predictions and conditional expectation

Definition 6 Let X and Y be random variables on (Q, F,P) such that E(Y?) < co. The best predictor
of Y given the knowledge of X is the function Y = h(X) that minimizes E((Y —Y)?).

Let L*(Q, F,P) be the set of random variables Z on (Q, F,P) such that E(Z?) < co. Define a scalar
product on the linear space L?(Q2, F,P) by (U, V) = E(UV) leading to the norm

12|l = (2, 2)'/* = (B(2%))"/2.
Let H be the subspace of L?(Q, F,P) of all functions of X having finite second moment
H = {h(X):E(h(X)?) < co}.
Geometrically, the best predictor of ¥ given X is the projection Y of ¥ on H so that
E((Y —Y)Z) =0, forall Z € H. (2)

Theorem 7 Let X and Y be random variables on (0, F,P) such that E(Y?) < co. The best predictor
of Y given X is the conditional expectation Y = E(Y|X).

Proof. Put ¥ = E(Y|X). We have due to the Jensen inequality Y2 < E(Y2|X) and therefore
E(Y?) < E(E(Y?X)) =E(Y?) < co.
It remains to verify (2):
E((Y —Y)Z) =E(E(Y —Y)Z|Z)) =E(E(Y|X)Z - YZ) = 0.

To prove uniqueness assume that there is another predictor Y with E((Y — Y)?) = E((Y — Y)?) = d°.
Then E((Y — ¥3¥)?) > d? and according to the parallelogram rule
V4V 2

v
T -7

2(Ily = V2 + 1y = 7)2) = 4y -

we have o R B
17 = VI <2y = V2 + )Y = V) - 4 = 0.



