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Abstract

A course based on the book Probability and Random Processes by Geoffrey Grimmett and David
Stirzaker. Chapter 9. Stationary processes.

1 Stationary processes

Definition 1 The real-valued process {X(t), t ≥ 0} is called strongly stationary if the vectors (X(t1), . . . , X(tn))
and (X(t1 + h), . . . , X(tn + h)) have the same joint distribution for all t1, . . . , tn and h > 0.

Definition 2 The real-valued process {X(t), t ≥ 0} with E(X2(t)) <∞ for all t is called weakly station-
ary if for all t1, t2 and h > 0

E(X(t1)) = E(X(t2)), Cov(X(t1), X(t2)) = Cov(X(t1 + h), X(t2 + h)).

Its autocovariance and autocorrelation functions are

c(t) = Cov(X(s), X(s+ t)), ρ(t) =
c(t)

c(0)
.

Example 1. Consider an irreducible Markov chain {X(t), t ≥ 0} with countably many states and a
stationary distribution π as the initial distribution. This is a strongly stationary process since

P(X(h+ t1) = i1, X(h+ t1 + t2) = i2, . . . , X(h+ t1 + . . .+ tn) = in) = πi1pi1,i2(t2) . . . pin−1,in(tn).

Example 2. The process {Xn, n = 1, 2, . . .} formed by iid Cauchy r.v is strongly stationary but not a
weakly stationary process.
Example 3. Put X(t) = cos(t + Y ) where Y is uniformly distributed over [0, 2π]. This is a strongly
stationary process since X(t+h) = cos(t+Y ′), where Y ′ is uniformly distributed over [h, 2π+h]. Given

an initial value this is a deterministic process and it is enough to show that X(t)
d
= X(0) for any t.

What is the distribution of X = X(t)? For an arbitrary bounded measurable function φ(x) we have

E(φ(X)) = E(φ(cos(t+ Y ))) =
1

2π

∫ 2π

0

φ(cos(t+ y))dy =
1

2π

∫ t+2π

t

φ(cos(z))dz =
1

2π

∫ 2π

0

φ(cos(z))dz

=
1

2π

(∫ π

0

φ(cos(z))dz +

∫ 2π

π

φ(cos(z))dz
)

=
1

2π

(∫ π

0

φ(cos(π − y))dy +

∫ π

0

φ(cos(π + y))dy
)

=
1

π

∫ π

0

φ(− cos(y))dy.

The change of variables x = − cos(y) yields dx = sin(y)dy =
√

1− x2dx, hence

E(φ(X)) =
1

π

∫ 1

−1

φ(x)dx√
1− x2

.

Thus X(t) has the so-called arcsine density f(x) = 1

π
√

1−y2
over the interval [−1, 1]. Notice that Z = X+1

2

has a Beta( 1
2 ,

1
2 ) distribution, since

E(φ(Z)) =
1

π

∫ 1

−1

φ(x+1
2 )dx

√
1− x2

=
1

π

∫ 1

0

φ(z)dz√
z(1− z)

.
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2 Linear combination of sinusoids

For a sequence of fixed frequencies 0 ≤ λ1 < . . . < λk < ∞ define a continuous time stochastic process
by

Xt =

k∑
j=1

(Aj cos(λjt) +Bj sin(λjt)),

where A1, B1, . . . , Ak, Bk are uncorrelated r.v. with zero means and Var(Aj) = Var(Bj) = σ2
j . Its mean

is zero and its autocovariancies are

Cov(Xt, Xs) = E(XtXs) =

k∑
j=1

E(A2
j cos(λjt) cos(λjs) +B2

j sin(λjt) sin(λjs))

=

k∑
j=1

σ2
j cos(λj(s− t)),

Var(Xt) =

k∑
j=1

σ2
j .

Thus Xt is weakly stationary with autocovariance and autocorrelation functions

c(t) =

k∑
j=1

σ2
j cos(λjt)

ρ(t) =
c(t)

c(0)
=

k∑
j=1

gj cos(λjt) =

∫ ∞
0

cos(λt)dG(λ),

where

gj =
σ2
j

σ2
1 + . . .+ σ2

k

, G(λ) =
∑

j:λj≤λ

gj .

We can write

X(t) =

∫ ∞
0

cos(tλ)dU(λ) +

∫ ∞
0

sin(tλ)dV (λ),

where
U(λ) =

∑
j:λj≤λ

Aj , V (λ) =
∑

j:λj≤λ

Bj .

Example 4. Let k = 1, λ1 = π
4 , A1 and B1 be iid with

P(A1 =
1√
2

) = P(A1 = − 1√
2

) =
1

2
.

Then Xt = cos(π4 (t+ τ)) with

P(τ = 1) = P(τ = −1) = P(τ = 3) = P(τ = −3) =
1

4
.

This stochastic process has only four possible trajectories. This is not a strongly stationary process since

E(X4(t)) =
1

2

(
cos4

(π
4
t+

π

4

)
+ sin4

(π
4
t+

π

4

))
=

1

4

(
2− sin2

(π
2
t+

π

2

))
=

1 + sin2(π2 t)

2
.
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3 The spectral representation

Any weakly stationary process {X(t) : −∞ < t < ∞} with zero mean can be approximated by a linear
combination of sinusoids. Indeed, its autocovariance function c(t) is non-negative definite since for any
t, . . . , tn and z, . . . , zn

n∑
j=1

n∑
k=1

c(tk − tj)zjzk = Var
( n∑
k=1

zkX(tk)
)
≥ 0.

Thus due to the Bochner theorem, given that c(t) is continuous at zero, there is a probability distribution
function G such that

ρ(t) =

∫ ∞
0

cos(tλ)dG(λ).

Definition 3 The function G is called the spectral distribution function of the corresponding stationary
random process, and the set of real numbers λ such that

G(λ+ ε)−G(λ− ε) > 0 for all ε > 0

is called the spectrum of the random process. If G has density it is called the spectral density function.

Theorem 4 If {X(t) : −∞ < t < ∞} is a weakly stationary process with zero mean, unit variance,
continuous autocorrelation function and spectral distribution function G, then there exists a pair of
uncorrelated zero mean random process (U(λ), V (λ)) with uncorrelated increments such that

X(t) =

∫ ∞
0

cos(tλ)dU(λ) +

∫ ∞
0

sin(tλ)dV (λ)

and Var(U(λ)) = Var(V (λ)) = G(λ).

Example 5. Consider an irreducible Markov chain {X(t), t ≥ 0} with two states {1, 2} and generator

G =

(
−α α
β −β

)
.

Its stationary distribution is π = ( β
α+β ,

α
α+β ) will be taken as the initial distribution. From

p11(t) = 1− p12(t) =
β

α+ β
+

α

α+ β
e−t(α+β),

p22(t) = 1− p21(t) =
α

α+ β
+

β

α+ β
e−t(α+β)

we find for t ≥ 0

c(t) =
αβ

(α+ β)2
e−t(α+β), ρ(t) = e−t(α+β).

Thus this process has a spectral density

g(λ) =
2(α+ β)

π((α+ β)2 + λ2)
, λ ≥ 0

corresponding to a scaled one-sided Cauchy distribution.

4 The ergodic theorem

The following theorems are extensions of the Laws of Large Numbers.

Theorem 5 Let {Xn, n = 1, 2, . . .} be a strongly stationary process with a finite mean. There exists a
r.v. Y with the same mean such that

X1 + . . .+Xn

n
→ Y a.s. and in mean.
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Theorem 6 Let {Xn, n = 1, 2, . . .} be a weakly stationary process. There exists a r.v. Y with the same
mean such that

X1 + . . .+Xn

n
→ Y in square mean.

Example 6. Let Z1, . . . , Zk be iid with mean µ and variance σ2. Then the following cyclic process

X1 = Z1, . . . , Xk = Zk,

Xk+1 = Z1, . . . , X2k = Zk,

X2k+1 = Z1, . . . , X3k = Zk, . . . ,

is a strongly stationary process. The corresponding limit in the ergodic theorem is not the constant µ
like in the strong LLN but rather a random variable

Y =
Z1 + . . .+ Zk

k
.

Clearly, E(Y ) = µ.

5 Gaussian processes

The covariance matrix of a random vector (X1, . . . , Xn) with means µ = (µ1, . . . , µn)

V = E
(
X− µ

)t(
X− µ

)
= ‖cov(Xi, Xj)‖

is symmetric and nonnegative-definite. For any vector a = (a1, . . . , an) the r.v. a1X1 + . . .+ anXn has
mean aµt and variance

var(a1X1 + . . .+ anXn) = E
(
aXt − aµt

)(
Xat − µat

)
= aVat.

A multivariate normal distribution with mean vector µ = (µ1, . . . , µn) and covariance matrix V has
density

f(x) =
1√

(2π)ndetV
e−(x−µ)V−1(x−µ)t

and moment generating function φ(t) = eitµ
t− 1

2 tVtt . It follows that given a vector X = (X1, . . . , Xn)
with a multivariate normal distribution any linear combination aXt = a1X1 + . . . + anXn is normally
distributed since

E(etaX
t

) = φ(ta) = eitµ−
1
2 t

2σ2

, µ = aµt, σ2 = aVat.

Definition 7 A random process {X(t), t ≥ 0} is called Gaussian if for any (t1, . . . , tn) the vector
(X(t1), . . . , X(tn)) has a multivariate normal distribution.

A Gaussian random process is strongly stationary iff it is weakly stationary.

Theorem 8 A Gaussian process {X(t), t ≥ 0} is Markov iff for any 0 ≤ t1 < . . . < tn)

E(X(tn)|X(t1), . . . , X(tn−1)) = E(X(tn)|X(tn−1)).

A stationary Gaussian Markov process is called the Ornstein-Uhlenbeck process. It is characterized by
ρ(t) = e−αt, t ≥ 0 with a positive α. This follows from the equation ρ(t+ s) = ρ(t)ρ(s).
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