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Abstract

A course based on the book Probability and Random Processes by Geoffrey Grimmett and David
Stirzaker. Chapter 9. Stationary processes.

1 Stationary processes

Definition 1 The real-valued process { X (t),t > 0} is called strongly stationary if the vectors (X (t1), ..., X (tn))
and (X(t1 + h),..., X (t, + h)) have the same joint distribution for all t1,...,t, and h > 0.

Definition 2 The real-valued process { X (t),t > 0} with E(X?(t)) < oo for all t is called weakly station-
ary if for all t1,t3 and h > 0

E(X(t)) = E(X(t)),  Cou(X(t1), X(t2)) = Cov(X (t1 + h), X (t2 + h)).

Its autocovariance and autocorrelation functions are
c(t) = Cov(X(s), X (s + 1)), p(t) = —=

Example 1. Consider an irreducible Markov chain {X(¢),¢ > 0} with countably many states and a
stationary distribution 7 as the initial distribution. This is a strongly stationary process since

]P)(X(h—‘rtl) = il,X(h+t1 —l—tg) =19,... ,X(h+t1 + ... -I—tn) = Zn) = Wilpil,iz(tQ) .. -pin,l,in(tn)-

Example 2. The process {X,,,n = 1,2,...} formed by iid Cauchy r.v is strongly stationary but not a

weakly stationary process.

Example 3. Put X (¢) = cos(t +Y) where Y is uniformly distributed over [0,27]. This is a strongly

stationary process since X (t+h) = cos(t+Y"), where Y’ is uniformly distributed over [h, 27 + h]. Given

an initial value this is a deterministic process and it is enough to show that X () Lx (0) for any t.
What is the distribution of X = X (¢)? For an arbitrary bounded measurable function ¢(z) we have

1 27 1 t+27 1 27

E(0(X)) = Blo(eos(t+Y)) = 5 | dleos(t gy =5 [ oleos(zdz = 5 | ofeos(z)a:

= % ( /07T p(cos(z))dz + g (cos(z))dz) = % ( /O7r ¢(cos(m — y))dy + /07r @(cos(m + y))dy)
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The change of variables © = — cos(y) yields dz = sin(y)dy = V1 — z2dz, hence
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over the interval [—1, 1]. Notice that Z = 2}
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Thus X (¢) has the so-called arcsine density f(z) =

-y

has a Beta(3, 1) distribution, since



2 Linear combination of sinusoids

For a sequence of fixed frequencies 0 < A; < ... < Ay < 0o define a continuous time stochastic process
by
k
Xy =Y (A cos(\jt) + B;sin(\;t)),
j=1
where Ay, By, ..., Ag, By, are uncorrelated r.v. with zero means and Var(A;) = Var(B;) = o3. Its mean

is zero and its autocovariancies are

k
Cov(Xy, Xs) = E(X: X;5) = Z]E(Af cos(A;jt) cos(A;s) 4 Bj sin(\;t) sin(A;s))

j=1

k
= Z 0]2- cos(A;j(s — 1)),
j=1

k
Var(X,) = Z 7.
j=1

Thus X; is weakly stationary with autocovariance and autocorrelation functions

k
c(t) = Z 0?. cos(A;t)

where

We can write

where

Un = Y A, V()= > B;.

FiA <A FiA <A

Example 4. Let k=1, \y = 7, A; and B, be iid with

This stochastic process has only four possible trajectories. This is not a strongly stationary process since

E(X(t)) = %(cos4 (%t—i— g) + sin? GH %)) = 3(2 ~ sin? (§t+ g)) _ 1+s12n2(gt)



3 The spectral representation

Any weakly stationary process {X(t) : —oo < t < 0o} with zero mean can be approximated by a linear
combination of sinusoids. Indeed, its autocovariance function ¢(t) is non-negative definite since for any

t...,tpand z ..., 2,
ZZc(tk —tj)ziz = Var(szX(tk)) > 0.
k=1

=1 k=1

Thus due to the Bochner theorem, given that ¢(t) is continuous at zero, there is a probability distribution
function G such that

p(t) = /000 cos(tA)dG(N).

Definition 3 The function G is called the spectral distribution function of the corresponding stationary
random process, and the set of real numbers \ such that

GA+e)—GA—¢€) >0 foralle >0
is called the spectrum of the random process. If G has density it is called the spectral density function.

Theorem 4 If {X(t) : —o0 < t < o0} is a weakly stationary process with zero mean, unit variance,
continuous autocorrelation function and spectral distribution function G, then there exists a pair of
uncorrelated zero mean random process (U(X), V(X)) with uncorrelated increments such that

X(t) = /0 " cos(tN AU () + /O () AV (\)

and Var(U (X)) = Var(V(N\)) = G(A).

Example 5. Consider an irreducible Markov chain {X (¢),¢ > 0} with two states {1,2} and generator

[ o o«
a=( 3 %)

Its stationary distribution is 7w = (%iﬁ, ) will be taken as the initial distribution. From

atB
B QO —t(atp)
£ =1—pot) = —— + ath),
p11(t) p12(t) a+t B a—l—ﬁe
a B ~tats)
) =1—pn(t) = +
pa2(t) p21(t) o+t a+5€
we find for £t > 0
(t) = B ia+s) p(t) = e~ He+D),
(a+pB)? ’
Thus this process has a spectral density
2
g(A) = o+ 5) A0

Coa((a+ B2+ 22

corresponding to a scaled one-sided Cauchy distribution.

4 The ergodic theorem

The following theorems are extensions of the Laws of Large Numbers.

Theorem 5 Let {X,,,n =1,2,...} be a strongly stationary process with a finite mean. There exists a
r.v. Y with the same mean such that

Xi+...+ X,
n

— Y a.s. and in mean.



Theorem 6 Let {X,,n=1,2,...} be a weakly stationary process. There exists a r.v. Y with the same

mean such that
Xi+...+ X, )
——— — Y in square mean.
n

Example 6. Let Zi, ..., Z; be iid with mean p and variance o2. Then the following cyclic process
Xl :Zl7"'7Xk::Zk??

Xit1=21,...,Xop = Zp,
Xoky1=21,..., X3 = Ziy- - -,

is a strongly stationary process. The corresponding limit in the ergodic theorem is not the constant p
like in the strong LLN but rather a random variable

Zy+ ...
y_4t -+
k
Clearly, E(Y) = p.
5 Gaussian processes
The covariance matrix of a random vector (Xi,...,X,,) with means p = (p1,..., tn)

V= E(X _ N)t(X _ H) = HCOV(Xi7Xj)H

is symmetric and nonnegative-definite. For any vector a = (a1, ...,a,) the r.v. a1 X7 + ... + a, X,, has
mean ap' and variance

var(a; X1+ ...+ ap X,) = IE(alXt - a,ut) (Xat - uat) = aVa'.

A multivariate normal distribution with mean vector p = (pu1, ..., ) and covariance matrix V has
density
F(x) = 1 o )V )t
(2m)"detV
and moment generating function ¢(t) = ¢ ~2tVt' It follows that given a vector X = (X1,...,X,,)

with a multivariate normal distribution any linear combination aX® = a; X1 + ... + a, X,, is normally
distributed since . 1 a
E(etaX’) _ d)(ta) — pitn—zt’o . p= aut’ o2 = aVa'.

Definition 7 A random process {X(t),t > 0} is called Gaussian if for any (t1,...,t,) the vector
(X(t1),...,X(tn)) has a multivariate normal distribution.

A Gaussian random process is strongly stationary iff it is weakly stationary.

Theorem 8 A Gaussian process {X (t),t > 0} is Markov iff for any 0 <t; < ...<tp)
E(X(6)|X (1), -, Xt 1)) = E(X (60)| X (1 1)).

A stationary Gaussian Markov process is called the Ornstein-Uhlenbeck process. It is characterized by
p(t) = e~ t > 0 with a positive a. This follows from the equation p(t + s) = p(t)p(s).



