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Background and motivation
Monte Carlo and importance sampling

Markov Chain Monte Carlo sampling

Today’s learning objectives

After this lecture you should be able to

Explain what Monte Carlo methods are and why they are
important.

Describe how importance sampling works.

Use the Metropolis-Hastings algorithm to sample from a
general distribution.

Explain what Gibbs sampling is and when it is useful.
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Background and motivation
Monte Carlo and importance sampling

Markov Chain Monte Carlo sampling

Decisions vs integrals
Deterministic solutions

Bayesian Inference

Data: a realization x
Parameters, latent variables: θ = [θ1, θ2, . . . , θp]

Likelihood: L(x |θ)
Inference based on the joint posterior

π(θ|x) = L(x |θ)π0(θ)∫
L(x |θ)π0(θ) dθ

∝ L(x |θ)π0(θ)

Posterior ∝ Likelihood× Prior
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Background and motivation
Monte Carlo and importance sampling

Markov Chain Monte Carlo sampling

Decisions vs integrals
Deterministic solutions

Making decisions

Decisions are made by minimizing posterior expected loss.
Two examples:

1 Estimation:

θ̂ = E{θ
∣∣x} = ∫ θπ(θ

∣∣x) dθ
2 Model selection among two candidates m1 and m2:

∫
f (x
∣∣θ1,m1)π(θ1

∣∣m1) dθ1

m1
>
<
m2

∫
f (x
∣∣θ2,m2)π(θ2

∣∣m2) dθ2
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Background and motivation
Monte Carlo and importance sampling

Markov Chain Monte Carlo sampling

Decisions vs integrals
Deterministic solutions

Decisions by solving integrals

In general, decisions are often made by computing integrals

I =
∫

g(θ)π(θ
∣∣x) dθ

Today’s problem formulation
Given: a distribution p(θ), known up to a normalization constant,
and function, g(θ).
Objective: find

I =
∫

g(θ)p(θ) dθ.
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Background and motivation
Monte Carlo and importance sampling

Markov Chain Monte Carlo sampling

Decisions vs integrals
Deterministic solutions

Analytical solutions

If conjugate prior, posterior p(θ) = π(θ
∣∣x) has nice analytical

expression
Examples: Beta-Binomial, Gauss-Gauss, Gamma-Poisson, etc.

For some functions g(θ) the integral then has a closed form
expression ⇒ we are done!

Limitations: rarely ever possible in problems of practical
interest.
More common: conjugate priors are used but solutions hard due to
nuisance parameters
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Background and motivation
Monte Carlo and importance sampling

Markov Chain Monte Carlo sampling

Decisions vs integrals
Deterministic solutions

Deterministic approximations

There are many techniques to approximate such integrals (or
to perform inference) deterministically.

Some examples:
quadrature methods (related to unscented transform)
Laplace approximation (assumes unimodality)
message passing (uses conditional independence)
variational Bayes (approximate independence)

Very important and useful techniques!

Weakness: limited accuracy. In particular when
approximations do not match model structure.
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Background and motivation
Monte Carlo and importance sampling

Markov Chain Monte Carlo sampling

Monte Carlo methods
Importance sampling

Monte Carlo methods

Method
Generate independent and identically distributed (iid) samples
θ1, . . . , θN from p(θ). Approximate

I =
∫

g(θ)p(θ) dθ ≈ 1
N

N∑
i=1

g(θi ).
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Law of large numbers: limN→∞
1
N
∑N

i=1 g(θi ) = I .
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Background and motivation
Monte Carlo and importance sampling

Markov Chain Monte Carlo sampling

Monte Carlo methods
Importance sampling

Monte Carlo methods – properties

Î = 1
N
∑N

i=1 g(θi ) is an unbiased estimate of I

E

{
1
N

N∑
i=1

g(θi )

}
= I

Error covariance is

Cov{Î} = E
{
(Î − I )(Î − I )T

}
= . . .

= ?

1
N
Cov{g(θ)}

 . . .

vanishes as 1/N

, independently of dimensionality of θ!

Difficulty: how can we generate θ1, . . . , θN?
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Background and motivation
Monte Carlo and importance sampling

Markov Chain Monte Carlo sampling

Monte Carlo methods
Importance sampling

Monte Carlo methods – feasible?

Usually p(θ) is not a simple distribution, like Gaussian or Beta
⇒ we cannot use built-in random generators directly!

In fact, p(θ) is often the posterior

p(θ) ∝ π(θ)f (x
∣∣θ)

with unknown normalization.

Is it still possible to use the Monte Carlo idea?
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Background and motivation
Monte Carlo and importance sampling

Markov Chain Monte Carlo sampling

Monte Carlo methods
Importance sampling

Importance sampling – basic idea

Importance sampling
Generate θ1, . . . , θN from a proposal distribution q(θ) and use
approximation

I =
∫

g(θ)
p(θ)
q(θ)

q(θ) dθ ≈ 1
N

N∑
i=1

g(θi )
p(θi )
q(θi )

Often, weights w̃i =
p(θi )

q(θi )N
contain unknown normalization,

therefore replaced by
wi =

w̃i∑N
n=1 w̃n

.

Now

I ≈
N∑

i=1

wig(θi )

with no need to know normalization of p(θ).
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Background and motivation
Monte Carlo and importance sampling

Markov Chain Monte Carlo sampling

Monte Carlo methods
Importance sampling

Importance sampling – an illustration

An illustration of samples and weights
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Note that some samples are given zero weight.
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Background and motivation
Monte Carlo and importance sampling

Markov Chain Monte Carlo sampling

Monte Carlo methods
Importance sampling

Importance sampling – remarks

Importance sampling ”works” as long as support of q(θ)
includes support of p(θ).

Proposal should also be easy to generate samples from and
similar to p(θ).

Generates independent samples that can be used for Monte
Carlo integration.

Works very well if proposal selected carefully.

Normally suffers from curse of dimensionality
 proposal mismatch grows quickly and makes most
weights zero!
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Background and motivation
Monte Carlo and importance sampling

Markov Chain Monte Carlo sampling

Markov chains
Metropolis-Hastings algorithm
Gibbs sampling

The MCMC concept
Can Markov chains be used to perform Monte Carlo sampling?
Suppose that we wish to generate samples from
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Background and motivation
Monte Carlo and importance sampling

Markov Chain Monte Carlo sampling

Markov chains
Metropolis-Hastings algorithm
Gibbs sampling

Markov chains and kernels

A Markov chain is a sequence of random variables, θ1, θ2, . . . ,
that can be thought of as evolving over time.

A key property is the conditional independence (Markov
property):

f (θm
∣∣θm−1, θm−2, . . . , θ1) = f (θm

∣∣θm−1)

The distribution f (θm
∣∣θm−1) is called the transition kernel

K (θm
∣∣θm−1) = f (θm

∣∣θm−1).

⇒

{
1 =

∫
K (θm

∣∣θm−1) dθm
f (θm) =

∫
K (θm

∣∣θm−1)f (θm−1) dθm−1
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Background and motivation
Monte Carlo and importance sampling

Markov Chain Monte Carlo sampling

Markov chains
Metropolis-Hastings algorithm
Gibbs sampling

Stationary distributions

Many Markov chains converge to a stationary distribution
over time
 θm−1 and θm (almost) identically distributed for large m.

π(θ) is a stationary distribution if

π(θm) =

∫
K (θm

∣∣θm−1)π(θm−1) dθm−1

Example: compute π1 = π(θ = 1) and π2 = π(θ = 2).

θ = 1 θ = 2
0.4

0.6

0.2

0.8

P =

(
0.6 0.4
0.2 0.8

)
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Background and motivation
Monte Carlo and importance sampling

Markov Chain Monte Carlo sampling

Markov chains
Metropolis-Hastings algorithm
Gibbs sampling

Reversible chains

A Markov chain is reversible if ∃π(θ):
π(θ′)K (θ

∣∣θ′) = π(θ)K (θ′
∣∣θ) (1)

 probability of beeing at θ and passing to θ′ and from beeing
at θ′ and passing to θ are the same.
Example: verify that the above chain is reversible.

P =

(
0.6 0.4
0.2 0.8

)
P∞ =

(
1/3 2/3
1/3 2/3

)

p = pP

1/3 ∗ 0.4 = 2/3 ∗ 0.2

Note: (1) is called detailed balance condition and implies
that π(θ) is a stationary distribution!

Proof: integrate both sides with respect to θ∫
π(θ′)K (θ

∣∣θ′) dθ =
∫
π(θ)K (θ′

∣∣θ) dθ

where lhs is simply π(θ′). The condition for stationarity!
Chalmers University of Technology Tomas McKelvey November 26, 2012 17/30



Background and motivation
Monte Carlo and importance sampling

Markov Chain Monte Carlo sampling

Markov chains
Metropolis-Hastings algorithm
Gibbs sampling

Reversible chains

A Markov chain is reversible if ∃π(θ):
π(θ′)K (θ

∣∣θ′) = π(θ)K (θ′
∣∣θ) (1)

 probability of beeing at θ and passing to θ′ and from beeing
at θ′ and passing to θ are the same.
Example: verify that the above chain is reversible.

P =

(
0.6 0.4
0.2 0.8

)

P∞ =

(
1/3 2/3
1/3 2/3

)

p = pP

1/3 ∗ 0.4 = 2/3 ∗ 0.2

Note: (1) is called detailed balance condition and implies
that π(θ) is a stationary distribution!

Proof: integrate both sides with respect to θ∫
π(θ′)K (θ

∣∣θ′) dθ =
∫
π(θ)K (θ′

∣∣θ) dθ

where lhs is simply π(θ′). The condition for stationarity!
Chalmers University of Technology Tomas McKelvey November 26, 2012 17/30



Background and motivation
Monte Carlo and importance sampling

Markov Chain Monte Carlo sampling

Markov chains
Metropolis-Hastings algorithm
Gibbs sampling

Reversible chains

A Markov chain is reversible if ∃π(θ):
π(θ′)K (θ

∣∣θ′) = π(θ)K (θ′
∣∣θ) (1)

 probability of beeing at θ and passing to θ′ and from beeing
at θ′ and passing to θ are the same.
Example: verify that the above chain is reversible.

P =

(
0.6 0.4
0.2 0.8

)
P∞ =

(
1/3 2/3
1/3 2/3

)
p = pP

1/3 ∗ 0.4 = 2/3 ∗ 0.2

Note: (1) is called detailed balance condition and implies
that π(θ) is a stationary distribution!

Proof: integrate both sides with respect to θ∫
π(θ′)K (θ

∣∣θ′) dθ =
∫
π(θ)K (θ′

∣∣θ) dθ

where lhs is simply π(θ′). The condition for stationarity!
Chalmers University of Technology Tomas McKelvey November 26, 2012 17/30



Background and motivation
Monte Carlo and importance sampling

Markov Chain Monte Carlo sampling

Markov chains
Metropolis-Hastings algorithm
Gibbs sampling

Reversible chains

A Markov chain is reversible if ∃π(θ):
π(θ′)K (θ

∣∣θ′) = π(θ)K (θ′
∣∣θ) (1)

 probability of beeing at θ and passing to θ′ and from beeing
at θ′ and passing to θ are the same.
Example: verify that the above chain is reversible.

P =

(
0.6 0.4
0.2 0.8

)
P∞ =

(
1/3 2/3
1/3 2/3

)
p = pP

1/3 ∗ 0.4 = 2/3 ∗ 0.2
Note: (1) is called detailed balance condition and implies
that π(θ) is a stationary distribution!

Proof: integrate both sides with respect to θ∫
π(θ′)K (θ

∣∣θ′) dθ =
∫
π(θ)K (θ′

∣∣θ) dθ

where lhs is simply π(θ′). The condition for stationarity!
Chalmers University of Technology Tomas McKelvey November 26, 2012 17/30



Background and motivation
Monte Carlo and importance sampling

Markov Chain Monte Carlo sampling

Markov chains
Metropolis-Hastings algorithm
Gibbs sampling

Metropolis-Hastings (MH) algorithm

An MCMC algorithm which is flexible and very simple to use.

A technique to design a reversible Markov chain with
stationary distribution π(θ) = p(θ).

MH has two components

1 Proposal distribution q(θ′
∣∣θ): suggests a move from θ to θ′.

Often simply θ′ = θ + n where n ∼ N (0, I ).

2 Acceptance probability a(θ′
∣∣θ): the proposed state is

accepted with probability a(θ′
∣∣θ)

 a(θ′
∣∣θ) is selected to ensure that the detailed balance

conditioned is satisfied for π(θ) = p(θ).
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Background and motivation
Monte Carlo and importance sampling

Markov Chain Monte Carlo sampling

Markov chains
Metropolis-Hastings algorithm
Gibbs sampling

Metropolis-Hastings (MH) algorithm

Summary of the MH algorithm
Start with an arbitrary initial value θ0.
Update from θm to θm+1 (m = 0, 1, . . . ,N) by

1 Generate ξ ∼ q(ξ
∣∣θm).

2 Take

θm+1 =

{
ξ with probability a(ξ

∣∣θm)
θm otherwise.

Given a realization of the chain we do Monte Carlo sampling:

1
N − Nb + 1

N∑
m=Nb

g(θm)

where Nb is when we hope that the chain has reaches its
stationary distribution (burn-in time)
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Background and motivation
Monte Carlo and importance sampling

Markov Chain Monte Carlo sampling

Markov chains
Metropolis-Hastings algorithm
Gibbs sampling

The acceptance probability

We wish to select a(θ′
∣∣θ) such that

p(θ′)K (θ
∣∣θ′) = p(θ)K (θ′

∣∣θ)
 ensures that p(θ) is a stationary distribution.

What is the transition kernel, K (θ′
∣∣θ) (when θ′ 6= θ)?

K (θ′
∣∣θ) = ?

q(θ′
∣∣θ)a(θ′∣∣θ).

How can we select a(θ′
∣∣θ) to satisfy the above detailed

balance condition?

p(θ′)q(θ
∣∣θ′)a(θ∣∣θ′) = p(θ)q(θ′

∣∣θ)a(θ′∣∣θ)
⇔

a(θ
∣∣θ′)

a(θ′
∣∣θ) =

p(θ)q(θ′
∣∣θ)

p(θ′)q(θ
∣∣θ′)
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Monte Carlo and importance sampling

Markov Chain Monte Carlo sampling

Markov chains
Metropolis-Hastings algorithm
Gibbs sampling

Metropolis-Hastings (MH) algorithm

Summary of the MH algorithm
Start with an arbitrary initial value θ0.
Update from θm to θm+1 (m = 0, 1, . . . ,N) by

1 Generate ξ ∼ q(ξ
∣∣θm).

2 Take

θm+1 =

{
ξ with probability min

{
1, p(ξ)q(θm|ξ)

p(θm)q(ξ|θm)

}
θm otherwise.

Note: algorithm involves point-wise evaluation of p(ξ)/p(θm)
 possible even when the normalization constant is unknown!
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Background and motivation
Monte Carlo and importance sampling

Markov Chain Monte Carlo sampling

Markov chains
Metropolis-Hastings algorithm
Gibbs sampling

The proposal distribution q(θ′
∣∣θ)

We want to select q(θ
∣∣θ′) such that the chain “explores the

space quickly” .
If it does, it is said to ”mix” well.
The most common choice for q is the random walk proposal

q(θ′
∣∣θ) = f (‖θ′ − θ‖)
⇔ ξ = θm + v ,

where v is a symmetric random variable.
For this choice, the acceptance probability simplifies to

a(ξ
∣∣θm) = min

{
1,

p(ξ)
p(θm)

}
 always accept proposals that move upwards.
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Background and motivation
Monte Carlo and importance sampling

Markov Chain Monte Carlo sampling

Markov chains
Metropolis-Hastings algorithm
Gibbs sampling

Metropolis-Hastings – summary

Pros:
The MH algorithm can be applied to virtually any problem.
We can collect all our samples from a single run of the Markov
chain.
The freedom in the choice of proposal gives us the possibility
to design a chain that mixes quickly.

Cons:
We need to select the proposal density, q(θ

∣∣θ′).
A poor choice will give us samples that are highly correlated
and do not represent the full distribution.
It is also difficult (impossible?) to know when the chain has
reached the stationary distribution. Use convergence
diagnostics!
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Monte Carlo and importance sampling

Markov Chain Monte Carlo sampling

Markov chains
Metropolis-Hastings algorithm
Gibbs sampling

Gibbs sampling – general algorithm

Gibbs sampling is an MCMC algorithm that make use of the
model structure.

Idea: sample one variable (dimension) at a time conditioned
on all the others.

The Gibbs sampler

Start with arbitrary initial vector θ0 = [θ0(1), θ0(2), . . . , θ0(d)]T .

For m = 0, 1, . . . ,N generate

1) θm+1(1) ∼ p(θ(1)
∣∣θm(2), . . . , θm(d))

2) θm+1(2) ∼ p(θ(2)
∣∣θm+1(1), θm(3), . . . , θm(d))

. . .
d) θm+1(d) ∼ p(θ(d)

∣∣θm+1(1), . . . , θm+1(d − 1))

Chalmers University of Technology Tomas McKelvey November 26, 2012 24/30



Background and motivation
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Markov chains
Metropolis-Hastings algorithm
Gibbs sampling

Gibbs sampling – toy example

The Gibbs sampler for the model[
θ(1)
θ(2)

]
∼ N

([
0
0

]
,

[
1 ρ
ρ 1

])
is
1) θm+1(1)

∣∣θm(2) ∼ N (ρθm(2), 1− ρ2)

2) θm+1(2)
∣∣θm+1(1) ∼ N (ρθm+1(1), 1− ρ2)

– For ρ = 0.7 it can look like this:
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Gibbs sampling vs Hierarchical models

Gibbs sampling is particularly useful for Hierachical models.

To sample θ ∼ π(θ|x), we can
generate

(θ, φ) ∼ π(θ, φ
∣∣x)

using Gibbs sampling:

θm+1 ∼ π(θ
∣∣φm, x)

φm+1 ∼ π(φ
∣∣θm+1)

x

θ

φ

observations

parameters

hyperparameters

Figure: A very small
hierachical model.

While generating φ we can ignore x due to conditional
independence.
 this benefit is substantially larger in bigger networks.
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Gibbs sampling – summary

Pros:
Few design choices makes it simple to use.
Utilizes the model structure.
Generates high dimensional variables using a sequence of low
dimensional simulations.

Cons:
Mixes poorly if variables are highly correlated.
Requires knowledge of p(θ).
Only applicable if conditionals are easy to simulate.
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Other sampling methods

There are many other sampling methods that we could not cover
today:

Rejection sampling – a classical method to generate
independent samples from a distribution.
Slice sampler – a more general type of Gibbs sampler.
Population Monte Carlo – a combination of MH and particle
filters.
Hamiltonian (or Hybrid) Monte Carlo – introduces additional
latent variables that enables large steps in the state space.
Adaptive MCMC – methods to adaptively improve the proposal
distribution based on what we learn from the Markov chain.
Reversible Jump MCMC – an extension to situations where the
dimensionality of θ is unknown.
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Today’s learning objectives

After this lecture you should be able to

Explain what Monte Carlo methods are and why they are
important.

Describe how importance sampling works.

Use the Metropolis-Hastings algorithm to sample from a
general distribution.

Explain what Gibbs sampling is and when it is useful.
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