1 Sets

 $(A \cup B) \cup C = A \cup (B \cup C)$ $(A \cup B)^{C} = A^{C} \cap B^{C}$ $\underbrace{\text{Definition: } \sigma\text{-field}}_{\mathcal{F} \text{ subset of } \Omega \text{ is a } \sigma - field, \text{ if}}$ $(a) \ 0 \in \mathcal{F}$ $(b) \ \text{if } A_{1}, A_{2}, \dots \in \mathcal{F} \text{ then } \cup_{i=1}^{\infty} A_{i} \in \mathcal{F}$ $(c) \ \text{if } A \in \mathcal{F} \text{ then } A^{c} \in \mathcal{F}$

2 Probability

 $\mathbb{P}(A^C) = 1 - \mathbb{P}(A)$ If $B \supseteq A$ then $\mathbb{P}(B) = \mathbb{P}(A) + \mathbb{P}(B \setminus A) \ge$ $\mathbb{P}(A)$ $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$ More generally: $\mathbb{P}\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{i < j < k} \mathbb{P}(A_{i} \cap A_{j}) - \sum_{i < j < k} \mathbb{P}(A_{i} \cap A_{j} \cap A_{j} \cap A_{j}) = \frac{1}{2} \mathbb{E}\left(g(X)\right) = \frac{1}{2} \mathbb{E}\left(g(X)\right)$ $\cdots + (-1)^{n+1} \mathbb{P} \left(A_1 \cap A_2 \cap \cdots \cap A_n \right)$ Lemma 5, p. 7: Let $A_1 \subseteq A_2 \subseteq \ldots$, and write A for their limit: $A = \bigcup_{i=1}^{\infty} A_i = \lim_{i \to \infty} A_i$ then $\mathbb{P}(A) = \lim_{i \to \infty} \mathbb{P}(A_i)$ Similarly, $B_1 \supseteq B_2 \supseteq B_3 \supseteq \ldots$, then $B = \bigcap_{i=1}^{\infty} B_i = \lim_{i \to \infty} B_i$ satisfies $\mathbb{P}(B) = \lim_{i \to \infty} \mathbb{P}(B_i)$ Multiplication rule $P(A, B) = P(A)P(B \mid A)$ Conditional Probability $\frac{\text{Conditional } 1 \text{ } 1 \text{ } 2 \text{ } 2}{P(A \mid B) = \frac{P(A \cap B)}{P(B)}}$ $P(A \mid B, C, \dots) = \frac{P(A, B, C, \dots)}{P(B, C, \dots)}$ Bayes formula $\overline{\mathbb{P}(A|B)} = \mathbb{P}(\overline{B}|A)\mathbb{P}(A)\mathbb{P}(B)$ Total probability $P(A) = P(A \mid B)P(B)$ $+ P(A \mid B^C)P(B^C)$ $P(A) = \sum_{i=1}^{n} P(A \mid B_i) P(B_i)$ Definition 1, p. 13: A family $\{A_i : i \in I\}$ is independent if: $\mathbb{P}\left(\bigcap_{i\in J} A_i\right) = \prod_{i\in J} \mathbb{P}(A_i)$ For all finite subset J of I

3 Random Variable

Lemma 11, p. 30: Let F be a distribution function of X, then (a) $\mathbb{P}(X > x) = 1 - F(x)$ (b) $\mathbb{P}(x < X \le y) = F(y) - F(x)$ (c) $F(X = x) = F(x) - \lim_{y \to x} F(y)$ Marginal distribution: $\lim_{y \to \infty} F_{X,Y}(x, y) = F_X(x)$ $\lim_{x \to \infty} F_{X,Y}(x, y) = F_Y(y)$ Lemma 5, p. 39: The joint distribution function $F_{X,Y}$ of the random vector (X, Y) has the following properties: $\lim_{x,y \to \infty} F_{X,Y}(x, y) = 0$ $\lim_{x,y \to \infty} F_{X,Y}(x, y) = 1$

then if (x_1, y_1) \leq (x_2, y_2) $F_{X,Y}(x_1, y_1) \le F_{X,Y}(x_2, y_2)$ $F_{X,Y}$ is continuous from above, in that: $F_{X,Y}(x + u, y + v) \rightarrow F_{X,Y}(x, y)$ as $u, v \to 0$ Theorem: If X and Y are independent and q, h: $\mathbb{R} \to \mathbb{R}$, then g(X) and h(Y) are independent too. Definition: The *expectation* of the random variable X is: $\mathbb{E}(X) = \sum_{x:f(x)>0} xf(x)$ Lemma: If X has mass function f and $g : \mathbb{R} \to \mathbb{R}$, then: $\mathbb{E}(g(X)) = \sum_{x} g(x) f(x)$ Continuus counterpart: $E(g(X)) = \int_{-\infty}^{\infty} g(x) f_X(x) dx$ If k is a positive integer, the k:th moment m_k of X is defined $m_k = \mathbb{E}(X^k)$. The k:th central moment is σ_k = $\mathbb{E}((X-m_1)^k)$ Theorem: The expectation operator \mathbb{E} : (a) If $X \ge 0$ then $\mathbb{E}(X) \ge 0$ (b) If $a, b \in \mathbb{R}$ then $\mathbb{E}(aX + bY) =$ $a\mathbb{E}(X) + b\mathbb{E}(Y)$ Lemma: If X and Y are independent, then $\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$ Definition: X and Y are uncorrelated if $\mathbb{E}(XY) =$ $\mathbb{E}(X)\mathbb{E}(Y)$ Theorem: For random variables X and Y(a) $\operatorname{Var}(aX) = a^2 \operatorname{Var}(X)$ for $a \in \mathbb{R}$ (b) $\operatorname{Var}(X + Y) = \operatorname{Var}(X) + \operatorname{Var}(Y)$ if X and Y are uncorrelated. Indicator function: $\mathbb{E}I_A = \mathbb{P}(A)$

 $\frac{\text{distribution function}}{F: R- > [0,1]: F(x) = P(X \le x)}$ $\frac{\text{mass function}}{F(x)} = P(X \le x)$

3.1 Distribution functions

 $\begin{array}{l} \underline{Constant \ variable} \\ \overline{X(\omega)} = c; \ F(X) = \sigma(x-c) \\ \underline{Bernoulli \ distribution \ Bern(p)} \\ \overline{A \ coin \ is \ tossed \ one \ time \ and \ shows} \\ head \ with \ probability \ p \ with \ X(H) = 1 \\ and \ X(T) = 0 \\ F(X) = 0 \quad x < 0 \\ F(X) = 1 - p \quad 0 \le x < 1 \\ F(X) = 1 \quad x \ge 1 \\ \mathbb{E}(X) = p, \quad \operatorname{Var}(X) = p(1-p) \\ \underline{Binomial \ distribution \ bin(n,k)} \\ \overline{A \ coin \ is \ tossed \ n \ times \ and \ a \ head} \\ turns \ up \ each \ time \ with \ probability \ p. \\ The \ total \ number \ of \ heads \ is \ discribed \end{array}$

by: $f(k) = \binom{n}{k} p^k q^{n-k}$ $\mathbb{E}(X) = np, \quad \operatorname{Var}(X) = np(1-p)$ Poisson distribution $\overline{f(k) = \frac{\lambda^k}{k!} \exp(-\lambda)}$ $\mathbb{E}(X) = \operatorname{Var}(X) = \lambda$ Geometric distribution Independent Bernoulli trials are performed. Let W be the waiting time before the first succes occurs. Then $f(k) = P(W = k) = p(1 - p)^{k-1}$ $\mathbb{E}(X) = 1/p, \quad Var(X) = (1-p)/p^2$ negative binomial distribution Let W_r be the waiting time before the r:th success. Then $f(k) = P(W_r = k) = {\binom{k-1}{r-1}}p^r(1-p)^{k-r}$ k=r,r+1 $\mathbb{E}(X) = \frac{pr}{1-p}, \quad \text{Var} = \frac{pr}{(1-p)^2}$ Exponential distribution: $F(x) = 1 - e^{-\lambda x}, \quad x \ge 0$ $\mathbb{E}(X) = 1/\lambda, \quad \operatorname{Var}(X) = 1/\lambda^2$ $\begin{array}{l} \underline{\text{Normal distribution:}}\\ f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad -\infty < x < \infty\\ \mathbb{E}(X) = \mu, \quad \text{Var}(X) = \sigma^2 \end{array}$ Cauchy distribution: $f(x) = \frac{1}{\pi(1+x^2)}$ (no moments!)

3.2 Dependence

Joint distribution: Lemma: The random variables X and Y are independent if and only if $f_{X,Y}(x,y) = f_X(x)f_Y(y)$ for all $x, y \in \mathbb{R}$ $F_{X,Y}(x,y) = F_X(x)F_Y(y)$ for all $x, y \in \mathbb{R}$ Marginal distribution: $\overline{F_X(x)} = \mathbb{P}(X \leq x) = F(x,\infty) =$ $\int_{-\infty}^{x} \left(\int_{-\infty}^{-\infty} f(u, y) \, dy \, dx \right)$ Marginal densities: $f_X(x)$ $\mathbb{P}\left(\bigcup_{y}(\{X=x\}\cap\{Y=y\})\right)$ $\sum_{y} \tilde{\mathbb{P}}(X = x, Y = y) = \sum_{y} f_{X,Y}(x, y)$ $f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy$ Lemma: $\overline{\mathbb{E}(g(X,Y))} = \sum_{x,y} g(x,y) f_{X,Y}(x,y)$ Definition: $Cov(X, Y) = \mathbb{E}\left[(X - \mathbb{E}X)(Y - \mathbb{E}Y)\right]$

3.3 Conditional distributions

 $\begin{array}{l} \underline{\text{Definition:}}\\ \overline{\text{The conditional distribution of }Y \text{ given}}\\ X = x \text{ is:}\\ F_{Y|X}(y|x) = \mathbb{P}(Y \leq y|X \leq x)\\ = \int_{-\infty}^{x} \frac{f(v,y)}{f_{Y}(y)} dv, \quad \{y : f_{Y}(y) > 0\}\\ \overline{\text{Theorem: Conditional expectation}} \end{array}$

$$\begin{split} \psi(X) &= \mathbb{E}\left(Y \mid X\right), \quad \mathbb{E}\left(\psi(X)\right) = \mathbb{E}(Y) \\ \mathbb{E}\left(\psi(X)g(X)\right) &= \mathbb{E}\left(Yg(X)\right) \end{split}$$

3.4 Sums of random variables

 $\frac{\text{Theorem:}}{\mathbb{P}(X+Y=z) = \sum_{x} f(x,z-x)}$ If X and Y are independent, then $\mathbb{P}(X+Y=z) = f_{X+Y}(z) = \sum_{x} f_X(x) f_Y(z-x) = \sum_{y} f_X(z-y) f_Y(y)$

3.5 Multivariate normal distribution:

 $f(\mathbf{x}) = \frac{\exp\left(-\frac{1}{2}(\mathbf{x}-\mu)^T \mathbf{V}^{-1}(\mathbf{x}-\mu)\right)}{\sqrt{(2\pi)^n \det(\mathbf{V})}}$ $\mathbf{X} = (X_1, X_2, \dots, X_n)^T$ $\mu = (\mu_1, \dots, \mu_n), \quad \mathbb{E}(X_i) = \mu_i$ $\mathbf{V} = (v_{ij}), \quad v_{ij} = \operatorname{Cov}(X_i, X_j)$

4 Generating functions

 $\begin{array}{l} \hline \text{Definition: Generating function} \\ \hline \text{The generating function of the random} \\ \hline \text{The generating function of the random} \\ \hline \text{Variable X is defined by:} \\ \hline G(s) = \mathbb{E}(s^X) \\ \hline \text{Example: Generating functions} \\ \hline \text{Constant: $G(s) = s^c$} \\ \hline \text{Demoulli: $G(s) = (1 - p) + ps$} \\ \hline \text{Geometric: } \frac{ps}{1 - s(1 - p)} \\ \hline \text{Poisson: $G(s) = e^{\lambda(s - 1)}$} \\ \hline \text{Theorem: expectation} \leftrightarrow G(s) \\ \hline (a) \ \mathbb{E}(s) = G'(1) \\ \hline (b) \ \mathbb{E}(X(X - 1) \dots (X - k + 1)) = G^{(k)}(1) \\ \hline \\ \hline \text{Theorem: independence} \\ \hline X \ \text{and Y are independent, iff} \\ \hline G_{X+Y}(s) = G_X(s) G_Y(s) \end{array}$

4.1 Characteristic functions

Definition: moment generating function $\overline{M(t)} = \mathbb{E}(e^{tX})$ Definition: characteristic function $\Phi(t) = \mathbb{E}(e^{itX})$ Theorem: independance $\overline{X \text{ and } Y}$ are independent iff $\Phi_{X+Y}(t) = \Phi_X(t)\Phi_Y(t)$ Theorem: Y = aX + b $\Phi_Y(t) = e^{itb} \Phi_X(at)$ Definition: joint characteristic function $\Phi_{X,Y}(s,t) = \mathbb{E}(e^{isX}e^{itY})$ Independent if: $\Phi_{X,Y}(s,t) = \Phi_X(s)\Phi_Y(t)$ for all s and t Theorem: moment gf \leftrightarrow charact. fcn Examples of characteristic functions: Ber(p): $\Phi(t) = q + pe^{it}$ Bin distribution, bin(n, p): $\Phi_X(tt) =$ $(q + pe^{it})^n$

Exponential distr. $\Phi(t)$ $\int_0^\infty e^{itx} \lambda e^{-\lambda x} dx$ Cauchy distr: $\Phi(t) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{e^{itx}}{(1+x^2)} dx$ Normal distr, $\mathcal{N}(0,1)$: $\Phi(t)$ $\mathbb{E}(e^{itX}) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} \exp(itx - \frac{1}{2}x^2) dx$ Corollary: Random variables X and Y have the same characteristic function if and only if they have the same distribution function. Theorem: Law of large Numbers Let $X_1, X_2, X_3...$ be a sequence of iid r.v's with finite mean μ . Their partial sums $S_n = X_1 + X_2 + \dots +$ $X_n \text{ satisfy } \frac{1}{n}S_n \xrightarrow{D} \mu \text{ as } n \to \infty$ Central Limit Theorem: Let $X_1, X_2, X_3...$ be a sequence of iid r.v's with finite mean μ and finite nonzero σ^2 , and let $S_n = X_1 + X_2 + \cdots + X_n$ then $\frac{(S_n - n\mu)}{\sqrt{n\sigma^2}} \xrightarrow{D} \mathcal{N}(0, 1) \text{ as } n \to \infty$

5 Markov chains

Definiton Markov Chain $P(X_n = s \mid X_0 = x_0, \dots X_n - 1 = x_n 1) =$ $P(X_n \mid X_n - 1 = x_n - 1)$ Definition homogenous chain $P(X_n + 1 = j \mid X_n = i) = P(X_1 = j \mid j)$ $X_0 = i$ Definition transition matrix $\mathbf{P} = (p_{ij})$ with $p_{ij} = P(X_{n+1} = j \mid X_n = i)$ Theorem: P stochastic matrix (a) **P** has non-negative entries (b) **P** has row sum equal 1 n-step transition $p_{ij}(m, m+n) = P(X_{m+n} = j \mid X_m = i)$ Theorem Chapman Kolmogorov $p_{ij}(\overline{m.m+n+r}) =$ $\sum_{k} p_{ik}(m, m+n) p_{kj}(m+n, m+n+r)$ so $\mathbf{P}(m,m+n) = \mathbf{P}^n$ Definiton: mass function $\mu_i^{(n)} = P(X_n = i)$ $\mu^{(m+n)} = \mu(m)\mathbf{P}_n \Rightarrow \mu^{(n)} = \mu(0)\mathbf{P}^n$ Definition: persistent, transient persistent: $P(X_n = i \text{ for some } n \ge 1 \mid X_0 = i) = 1$ transient: $P(X_n = i \text{ for some } n \ge 1 \mid X_0 = i) < 1$ Definition: first passage time $\overline{f_{ij}(n) = P(X_1 \neq j, .., X_{n-1} \neq j, X_n} =$ $j \mid X_0 = i)$ $f_{ij} := \sum_{n=1}^{\infty} f_{ij}(n)$ Corollary: persistent, transient State j is persistent if $\sum_{n} p_{jj}(n) = \infty$ and $\Rightarrow \sum_{n} p_{ij}(n) = \infty$ for all *i* State j is transient if $\sum_{n} p_{jj}(n) < \infty$ and $\Rightarrow \sum_{n} p_{ij}(n) < \infty$ for all i $\frac{\text{Theorem: Generating functions}}{P_{ij}(s) = \sum_{n=0}^{\infty} s^n p_{ij}(n)}$

 $= |F_{ij}(s) = \sum_{n=0}^{\infty} s^n f_{ij}(n)$ then (a) $P_{ii}(s) = 1 + F_{ii}(s)P_{ii}(s)$ (b) $P_{ij}(s) = F_{ij}(s)P_{ij}(s)$ if $i \neq j$ Definition: First visit time T_j $\overline{T_j := \min\{n \geq 1 : X_n = j\}}$ Definition: mean recurrence time μ_i $\overline{\mu_i := E(T_i \mid X_0 = i)} = \sum_n n f_{ii}(n)$ Definition: null, non-null state state i is null if $\mu_i = \infty$ state i is non-null if $\mu_i < \infty$ Theorem: nullness of a persistent state A persistent state is null if and only if $p_{ii}(n) \to 0(n \to \infty)$ Definition: period d(i)The period d(i) of a state *i* is defined by $d(i) = gcd\{n : p_{ii}(n) > 0\}$. We call *i* periodic if d(i) > 1 and aperiodic if d(i) = 1Definition: Ergodic A state is called ergodic if it is persistent, non-null, and aperiodic. Definition: (Inter-)communication $i \to j$ if $p_{ij}(m) < 0$ for some m $i \leftrightarrow j$ if $i \rightarrow j$ and $j \rightarrow i$ Theorem: intercommunication If $i \leftrightarrow j$ then: (a) i and j have the same period (b) i is transient iff j is transient (c) i is null peristent iff j is null peristent Definition: closed, irreducible a set C of states is called: (a) closed if $p_{ij} = 0$ for all $i \in C, j \notin C$ (b) irreducible if $i \leftrightarrow j$ for all $i, j \in C$ an absorbing state is a closed set with one state Theorem: Decomposition State space S can be partitioned as $T = T \cup C_1 \cup C_2 \cup \ldots, T$ is the set of transient states, C_i irreducible, closed sets of persistent states Lemma: finite S If S is finite, then at least one state is persisten and all persistent states are non-null.

5.1 Stationary distributions

Definition: stationary distribution π is called stationary distribution if (a) $\pi_j \ge 0$ for all j, $\sum_j \pi_j = 1$ (b) $\pi = \pi P$, so $\pi_j = \sum_i \pi_i p_{ij}$ for all jTheorem: existence of stat. distribution An irreducible chain has a stationary distribution π iff all states are non-null persistent. Then π is unique and given by $\pi_i = \mu^{-1}$

Then π is unique and given by $\pi_i = \mu_i^{-1}$ Lemma: $\rho_i(k)$

 $\overline{\rho_i(k)}$: mean number of visits of the chain to the state i between two successive visits to state k.

Lemma: For any state k of an irre-

ducible persistent chain, the vector $\rho(k)$ satisfies $\rho_i(k) < \infty$ for all i and $\rho(k) = \rho(k)P$

Theorem: irreducible, persistent If the chain is irreducible and persistent, there exists a positive x with x = xP, which is unique to a multiplicative constant. The chain is non-null if $\sum_i x_i < \infty$ and null if $\sum_i x_i = \infty$

<u>Theorem: transient chain if</u>

s any state of an irreducible chain. The chain is transient iff there exists a non-zero solution $\{y_j : j \neq s\}$, with $|y_j| \leq 1$ for all j, to the equation:

 $\begin{array}{l} y_i = \sum_{j, j \neq s} p_{ij} y_j, \qquad i \neq s \\ \hline \text{Theorem: persistent if} \end{array}$

s any state of an irreducible chain on $S = \{0, 1, 2, ...\}$. The chain is persistent if there exists a solution $\{y_j : j \neq s\}$ to the inequalities $y_i \ge \sum_{j,j \neq s} p_{ij}y_j, \quad i \neq s$ Theorem: Limittheorem

For an irreducible aperiodic chain, we have that $p_{ij}(n) \rightarrow \frac{1}{\mu_i}$ as $n \rightarrow \infty$ for all i and j

5.2 Reversibility

Theorem: Inverse Chain Y with $Y_n = X_{N-n}$ is a Markov chain with $P(Y_{n+1} = j | Y_n = i) = (\frac{\pi_j}{\pi_i})p_{ji}$ Definition: Reversible chain A chain is called reversible if $\pi_i p_{ij} = \pi_j p_{ji}$ Theorem: reversible \rightarrow stationary If there is a π with $\pi_i p_{ij} = \pi_j p_{ji}$ then π is the stationary distribution of the chain.

5.3 Poisson process

Definition: Poisson process N(t) gives the number of events in time Poisson process N(t) in $S = \{0, 1, 2, ...\},\$ if (a) N(0) = 0; if s < t then $N(s) \le N(t)$ (b) $P(N(t+h) = n + m \mid N(t) = n) =$ $\lambda h + o(h)$ if m = 1o(h) if m > 1 $1 - \lambda h + o(h)$ if m = 0(c) the emission per interval are independent of the intervals before. Theorem: Poisson distribution N(t) has the Poisson distribution: $\frac{(\lambda t)^j}{j!}e^{-\lambda t}$ P(N(t))= j)= Definition: arrivaltime, interarrivaltime $\overline{\text{Arrival time: } T_n = \inf\{t : N(t) = n\}}$ Interarrival time: $X_n = T_n - T_{n-1}$ Theorem: Interarrivaltime X_1, X_2, \dots are independent having exponential distribution <u>Definition</u>: Birth process \rightarrow Poisson process with intensities $\lambda_0, \lambda_1, \ldots$

Eq. Forward System of Equations: $\frac{p'_{ij}(t) = \lambda_{j-1}p_{i,j-1}(t) - \lambda_j p_{ij}(t)}{j \ge i, \quad \lambda_{-1} = 0, \quad p_{ij}(0) = \delta_{ij}}$ Eq. Backward systems of equations: $\frac{p'_{ij}(t) = \lambda_i p_{i+1,j}(t) - \lambda p_{ij}(t)}{j \ge i \quad p_{ij}(0) = \delta_{ij}}$ The of the set of the set

The forward system has a unique solution which satisfies the backward equation.

5.4 Continuous Markov chain

Definition: Continuous Markov chain X is continuous Markov chain if: $P(X(t_n) = j \mid X(t_1))i_1, ..., X(t_{n-1}) =$ i_{n-1}) = $P(X(t_n) = j | X(t_{n-1})$ Definition: transistion probability $\overline{p_{ij}(s,t)} = P(X(t) = j \mid X(s) = i)$ for $s \leq t$ homogeneous if $p_{ij}(s,t) = p_{ij}(0,t-s)$ Def: Generator Matrix $G = (g_{ij}), \quad p_{ij}(h) = g_{ij}h \text{ if } i \neq j \text{ and}$ $p_{ii} = 1 + g_{ij}h$ Eq. Forward systems of equations: $\overline{P'_t = P_t G}$ Eq. Backward systems of equations: $\overline{P'_t = GP}_t$ Often solutions on the form P_t = $\exp(tG)$ Matrix Exponential: $\overline{\exp(tG)} = \sum_{n=1}^{\infty} \frac{t^n}{n!} G^n$ Definition: Irreducible if for any pair $i, j, p_{ij}(t) > 0$ for some tDefinition: Stationary $\overline{\pi, \pi_j \ge 0, \sum_j \pi_j = 1}$ and $\pi = \pi P_t \ \forall t \ge 0$ Claim: $\pi = \pi P_t \Leftrightarrow \pi G = 0$ Theorem: Stationary if $p_{ij}(t) \to \pi_j$ as $t \to \infty \ \forall i, j$ Not stationary if $p_{ij} \to 0$

6 Convergence of Random Variables

$$\begin{split} & \underbrace{\operatorname{Norm}}_{(\mathbf{a})} \|f\| \geq 0 \\ & (\mathbf{b}) \|f\| = 0 \text{ iff } f = 0 \\ & (\mathbf{c}) \|af\| = |a| \cdot \|f\| \\ & (\mathbf{d}) \|f + g\| \leq \|f\| + \|g\| \\ & \underbrace{\operatorname{convergent almost surely}}_{X_n} \xrightarrow{a.s.} X, \\ & \text{if } \{\omega \in \Omega : X_n(\omega) \to X(\omega) \text{ as } n \to \infty\} \\ & \underbrace{\operatorname{convergent in } r\text{th mean}}_{X_n \xrightarrow{r} \to X} \\ & \underbrace{\operatorname{convergent in } r\text{th mean}}_{X_n \xrightarrow{r} \to X} \\ & \text{if } \mathbb{E}|X_n^r| < \infty \text{ and } \mathbb{E}(|X_n - X|^r) \to 0 \text{ as } n \to \infty \\ & \underbrace{\operatorname{convergent in probability}}_{X_n \xrightarrow{P} X} \\ & \text{if } P(|X_n - X| > \epsilon) \to 0 \text{ as } n \to \infty \end{split}$$

convergent in distribution $X_n \xrightarrow{d} X$ if $P(X_n < x) \to P(X < x)$ as $n \to \infty$ Theorem: implications $(X_n \xrightarrow{a.s./r} X) \ \Rightarrow \ (X_n \xrightarrow{P} X) \ \Rightarrow \$ $(X_n \xrightarrow{D} X)$ For $r > s \ge 1$: $(X_n \xrightarrow{r} X) \Rightarrow (X_n \xrightarrow{s} X)$ Theorem: additional implications (a) If $X_n \xrightarrow{D} c$, where c is const, then $X_n \xrightarrow{P} c$ (b) If $X_n \xrightarrow{P} X$ and $P(|X_n| \le k) = 1$ for all n and some k, then $X_n \xrightarrow{r} X$ for all r > 1(c) If $P_n(\epsilon) = P(|X_n - X|) > \epsilon)$ satisfies $\sum_{n} P_n(\epsilon) < \infty$ for all $\epsilon > 0$, then $X_n \xrightarrow{a.s.} X$ Theorem: Skorokhod's representation t. If $X_n \xrightarrow{D} X$ as $n \to \infty$ then there exists a probability space and random variable Y_n, Y with: (a) Y_n and Y have distribution F_n, F (b) $Y_n \xrightarrow{a.s.} Y$ as $n \to \infty$ Theorem: Convergence over function If $X_n \xrightarrow{D} X$ and $g : \mathbb{R} \to \mathbb{R}$ is continuous then $g(X_n) \xrightarrow{D} g(X)$ Theorem: Equivalence The following statements are equivalent: (a) $X_n \xrightarrow{D} X$ (b) $\mathbb{E}(g(X_n)) \rightarrow \mathbb{E}(g(X))$ for all bounded continuous functions g(c) $\mathbb{E}(q(X_n)) \to \mathbb{E}(q(X))$ for all functions g of the form $g(x) = f(x)I_{[a,b]}(x)$ where f is continuous. Theorem: Borel-Cantelli Let $A = \bigcap_n \bigcup_{m=n}^{\infty} A_m$ be the event that infinitely many of the A_n occur. Then: (a) P(A) = 0 if $\sum_{n} P(A_n) < \infty$ (b) P(A) = 1 if $\sum_{n=1}^{n} P(A_n) = \infty$ and A_1, A_2, \dots are independent. Theorem: $\overline{X_n} \to \overline{X}$ and $Y_n \to \overline{Y}$ implies $X_n + Y_n \to \overline{X} + \overline{Y}$ for convergence a.s., r:th mean and probability. Not generally true in distribution.

6.1 Laws of large numbers

Theorem:

 X_1, X_2, \dots is iid and $\mathbb{E}(X_i^2) < \infty$ and $\mathbb{E}(X) = \mu$ then

 $\frac{1}{n}\sum_{i=1}^{n}X_i \to \mu$ a.s. and in mean square Theorem:

 $\overline{\{X_n\}}$ iid. Distribution function F. Then $\frac{1}{n} \sum_{i=1}^{n} X_i \xrightarrow{P} \mu$ iff one of the following holds: 1) $nP(|X_1| > n) \to 0$ and $\int_{[-n,n]} x dF$ as $n \to \infty$

2) Char. Fcn. $\Phi(t)$ of X_i is differen-

tiable at t = 0 and $\Phi'(0) = i\mu$ Theorem: Strong law of large numbers $\overline{X_1, X_2, \dots}$ iid. Then $\frac{1}{n} \sum_{i=1}^n X_i \to \mu$ a.s. as $n \to \infty$. for some μ , iff $\mathbb{E}|X_1| < \infty$. In this case $\mu = \mathbb{E}X_1$

6.2 Law of iterated logarithm

If X_1, X_2, \dots are iid with mean 0 and variance 1 then $\mathbb{P}(\limsup_{n \to \infty} \frac{S_n}{\sqrt{2n \log \log n}} = 1) = 1$

6.3 Martingales

Definition: Martingale $S_n: n \ge 1$ is called a martingale with respect to the sequence $X_n : n \ge 1$, if (a) $\mathbb{E}|S_n| < \infty$ (b) $\mathbb{E}(S_{n+1} \mid X_1, X_2, ..., X_n) = S_n$ Lemma: $\mathbb{E}(X_1 + X_2|Y) = \mathbb{E}(X_1|Y) + E(X_2|Y)$ $\mathbb{E}\left(Xg(Y)|Y\right) = g(Y)\mathbb{E}(X|Y), \quad g$: $\mathbb{R}^n \to R$ $\mathbb{E}(X|h(Y)) = \mathbb{E}(X|Y)$ if $h : \mathbb{R}^n \to \mathbb{R}^n$ is one-one Lemma: Tower Property $\overline{\mathbb{E}\left[E(X|Y_1, Y_2)|Y_1\right] = \mathbb{E}(X|Y_1)}$ Lemma: If $\{B_i : 1 \le i \le n\}$ is a partition of Athen $\mathbb{E}(X|A) = \sum_{i=1}^{n} \mathbb{E}(X|B_i)\mathbb{P}(B_i)$ Theorem: Martingale convergence If $\{S_n\}$ is a Martingale with $\mathbb{E}(S_n^2 <$ $M < \infty$) for some M and all n then $\exists S: S_n \overset{a.s,L^2}{\longrightarrow} S$

6.4 Prediction and conditional expectation

Notation: $\overline{\|U\|_2 = \sqrt{\mathbb{E}(U^2)}} = \sqrt{\langle U, U \rangle}$ $\langle U, V \rangle = \mathbb{E}(UV), \|U_n - U\|_2 \to 0 \iff$
$$\begin{split} U_n & \stackrel{L^2}{\longrightarrow} U \\ \|U+V\|_2 \leq \|U\|_2 + \|V\|_2 \end{split}$$
Def. X, Y r.v. $\mathbb{E}(Y^2) < \infty$. The minimum mean square predictor of Y given X is $\hat{Y} = h(X) = \min \|Y - \hat{Y}\|_{2}$ Theorem: If a (linear) space H is closed and $\hat{Y} \in H$ then min $\left\| Y - \hat{Y} \right\|_2$ exists Projection Theorem: \overline{H} is a closed linear space and Y: $\mathbb{E}(Y^2) < \infty$ For $M \in H$ then $\mathbb{E}((Y - M)Z) = 0 \Leftrightarrow$ $\left\|Y - M\right\|_2 \le \left\|Y - Z\right\|_2 \; \forall Z \in H$ Theorem: Let X and Y be r.v., $E(Y^2) < \infty$.

The best predictor of Y given X is $\mathbb{E}(X|Y)$

7 Stochastic processes

Definition: Renewal process $\overline{N} = \{N(t) : t \ge 0\}$ is a process for which $N(t) = \max\{n : T_n \le t\}$ where $T_0 = 0, \quad T_n = X_1 + X_2 + \dots + X_n$ for $n \ge 1$, and the X_n are iid non-negative r.v.'s

8 Stationary processes

<u>Definition:</u>

The Autocovariance function $c(t, t+h) = \operatorname{Cov}(X(t), X(t+h))$ <u>Definition</u>: The process $X = \{X(t) :$ $t \geq 0$ taking real values is called strongly stationary if the families $\{X(t_1), X(t_2), ..., X(t_n)\}$ and $\{X(t_1 +$ h, $X(t_2+h)$, ..., $X(t_n+h)$ } has the same joint distribution for all $t_1, t_2, ..., t_n$ and h > 0Definition: The process $X = \{X(t) :$ $t \geq 0$ taking real values is called weakly stationary if, for all t_1 and t_2 and $h > 0 : \mathbb{E}(X(t_1)) = \mathbb{E}(X(t_2))$ and $\operatorname{Cov}(X(t_1), X(t_2)) = \operatorname{Cov}(X(t_1 +$ h, $X(t_2 + h)$, thus if and only if it has constant means and its autocovariance function satisfies c(t, t+h) = c(0, h)Definition: The covariance of complex-valued C_1 and C_2 is $\operatorname{Cov}(C_1, C_2) = \mathbb{E}\left((C_1 - \mathbb{E}C_1)(\overline{C_2 - \mathbb{E}C_2})\right)$ Theorem: $\{X\}$ real, stationary with zero mean and autocovariance c(m). The best predictor from the class of linear functions of the subsequence $\{X\}_{r-s}^r$ is $\hat{X}_{r+k} = \sum_{i=0}^{s} a_i X_{r-i}$ where $\sum_{i=0}^{s} a_i c(|i-j|) = c(k+j)$ for $0 \le j \le s$ Definition: Autocorrelation function of a weakly stationary process with autocovariance function c(t) is $\rho(t) = \frac{\text{Cov}(X(0), X(t))}{\sqrt{\text{Var}(X(0))\text{Var}(X(t))}} = \frac{c(t)}{c(0)}$ Theorem: Spectral theorem: Weakly stationary process X with strictly pos. σ^2 is the char. function of some distribution Fwhenever $\rho(t)$ is continuous at t = 0 $\rho(t) = \int_{-\infty}^{\infty} e^{\lambda} dF(\lambda)$ F is called the spectral distribution function. Ergodic theorem: \overline{X} is strongly stationary such that $\mathbb{E}|X_1| < \infty$ there exists a r.v Y

with the same mean as X_n such that $\frac{1}{n}\sum_{j=1}^n X_j \to Y$ a.s and in mean Weakly stationary processes: If $X = \{X_n : n \ge 1\}$ is a weakly stationary process, there exists a Y such that $\mathbb{E}(Y) = \mathbb{E}(X_1)$ and $\frac{1}{n}\sum_{j=1}^n X_j \xrightarrow{m.s.} Y$.

8.1 Gaussian processes

Definition:

A real valued c.t. process is called Gaussian if each finite dimensional vector $(X(t_1), X(t_2), \ldots, X(t_n))$ has the multivariate normal distribution $\mathcal{N}(\mu(t), \mathbf{V}(t)), \quad t = (t_1, t_2, \ldots, t_n)$ <u>Theorem:</u>

The Gaussian process X is stationary iff. $\mathbb{E}(X(t))$ is constant for all t and $\mathbf{V}(t) = \mathbf{V}(t+h)$ for all t and h > 0

9 Inequalities

Cauchy-Schwarz: $\left(\mathbb{E}(XY)\right)^2 \le \mathbb{E}(X^2)\mathbb{E}(Y^2)$ with equality if and only if aX + bY = 1. Jensen's inequality: Given a convex function J(x) and a r.v. X with mean μ : $\mathbb{E}(J(X)) \geq J(\mu)$ Markov's inequality $\overline{P(|X| \ge a) \le \frac{\mathbb{E}|X|}{a}} \text{ for any } a > 0$ $h: (R) \to [0, \infty] \text{ non-negative fcn, then}$ $P(h(X) \ge a) \le \frac{\mathbb{E}(h(X))}{a} \quad \forall a > 0$ General Markov's inequality: $\overline{h:(R)} \to [0,M]$ non-negative function bounded by some M. Then $P(h(X) \ge a) \le \frac{\mathbb{E}(h(X)) - a}{M - a}$ Chebyshev's Inequality: $0 \le a \le M$ $\mathbb{P}\left(|X| \ge a\right) \le \frac{\mathbb{E}(X^2)}{a^2} \text{ if } a \ge 0$ Theorem: Holder's inequality If p, q > 1 and $p^{-1} + q^{-1} = 1$ then $\mathbb{E}|XY| \le (\mathbb{E}|X^p|)^{\frac{1}{p}} (\mathbb{E}|Y^p|)^{\frac{1}{q}}$ Minkowski's inequality: If $p \ge 1$ then $\left[\mathbb{E}(|X+Y|^{p})\right]^{\frac{1}{p}} \leq \left(\mathbb{E}|X^{p}|\right)^{\frac{1}{p}} + \left(\mathbb{E}|Y^{p}|\right)^{\frac{1}{q}}$ Minkowski 2: $\mathbb{E}(|X+Y|^p) \le C_P \left[\mathbb{E}|X^p| + \mathbb{E}|Y^p|\right]$ where p > 0 and $C_P \to \begin{cases} 1 & 0 0 \end{cases}$ Kolomogorov's inequality: Let $\{X_n\}$ be iid with zero means and variances σ_n^2 . Then for $\epsilon > 0$ $\mathbb{P}(\max_{1 \le i \le n} |X_1 + \dots + X_i| > \epsilon) \le \frac{\sigma_1^2 + \dots + \sigma_n^2}{\epsilon^2}$ Doob-Kolomogorov's inequality: If $\{S_n\}$ is a martingale, then for any

$$\mathbb{P}(\max_{1 \le i \le n} |S_i| > \epsilon) \le \frac{\mathbb{E}(S_n^2)}{\epsilon^2}$$