1 Sets

(AuUB)UC=AU(BUCQC)
(AUB)Y = AN B¢

Definition: o-field

F subset of Q is a o — field, if

(a) 0 e F

(b) if Al,AQ,... € F then UfilAl eF
(c)if A€ F then A° e F

2 Probability

P(AC) = 1 — P(A)

If BD AthenP(B) =P(A)+P(B\A) >
P(A)

P(AUB)=P(A)+P(B) —P(ANB)
More generally:

P (U=, 44) = 2 P(A) -

ZKJ (4; ﬁA-)—ZKKk]P’(AiﬂAjﬂz
e (=D)"TP (A N AN N AY)
Lemma 5, p. 7: Let A, C Ay C ...,
and write A for their limit:

A = Uzoil A; = lim;_. A; then
P(A) = lim; o P(A;)
Similarly, By O By O B3 2 , then

satisfies P(B)
Multiplication rule
P(A,B)=P(A)P(B | A)
Conditional Probability
P(A|B) = P(ANB)

P(B)
P(A| B,C,...)=
Bayes formula
P(A|B) = P(B|A)P(A)P(B)
Total probability
P(A)=P(A| B)P(B)
+ P(A| B)P(BY)
P(A) =372, P(A| B;)P(B:)
Definition 1, p. 13:
A family {A; : ¢ € T}is independent if:
P (Nics 4i) = ITic; P(A;) For all finite
subset J of I

P(A,B,C,...)
P(B.C,..)

3 Random Variable

Lemma 11, p. 30:
Let F be a distribution function of X,
then
(a) P(X >z)=1-F(x)
(b) P(a < X <y) = F(y) - F(x)
(c) F(X =2) = F(z) — limy_,, F(y)
Marginal distribution:
lim,_, o Fx y(z,y) = Fx(z)
lim, o0 Fix,v (7,y) = Fy (y)
Lemma 5, p. 39:
The joint distribution function Fx y of
the random vector (X,Y) has the fol-
lowing properties:

lim FX y(z,y)=0

T Yy——
lim FXy(x y) =1
@Y=

if  (z1,91) < (z2,y2)  then
Fxy(z1,y1) < Fx y(x2,2)

Fxy is continuous from above, in that:
Fxy(x +u,y +v) — Fxy(z,y) as
u,v — 0

Theorem:

If X and Y are independent and g, h :
R — R, then g(X) and h(Y) are inde-
pendent too.

Definition:

The expectation of the random variable
X is:

Lemma:

If X has mass function fand g : R — R,

then:
E(9(X)) =22, 9(x)f(2)

Continous counterpart

4/Eje_ﬁmtlon f

If k£ is a positive integer, the k:th mo-
ment my, of X is defined my = E(XF).

The k:th central moment is oy

E((X —m1)¥)

Theorem:

The expectation operator [E:

(a) If X > 0 then E(X) >0

(b) If a,b € R then E(aX + bY)
aE(X) + bE(Y)

Lemma:

If X and Y are independent,
E(XY) =E(X)E(Y)

Definition:

X and Y are uncorrelated if E(XY) =
E(X)E(Y)

Theorem:

For random variables X and Y

(a) Var(aX) = a®Var(X) for a € R

(b) Var(X +Y) = Var(X) + Var(Y) if
X and Y are uncorrelated.

Indicator function:

El, =P(A)

(x)dx

then

distribution function
F:R—>10,1]: F(z) = P(X <x)

3.1 Distribution functions

Constant variable

X(w)=c F(X)=0(x—c¢)

Bernoulli distribution Bern(p)

A coin is tossed one time and shows
head with probability p with X(H) =1
and X(T) =0

F(X)=0 2<0
F(X)=1-p 0<z<l
F(X)=1 z>1

E(X)=p, Var(X)=p(l-p)

Binomial distribution bin(n, k)

A coin is tossed n times and a head
turns up each time with probability p.
The total number of heads is discribed

by:
f(k) = (Q)p*q" "
E(X) =np, Var(X)=np(l-p)

Poisson distribution

F(k) = 2 exp(—))

E(X) = Var(X) = A

Geometric distribution

Independent Bernoulli trials are per-
formed. Let W be the waiting time
before the first succes occurs. Then
f(k) = P(W = k) = p(1 —p)**
E(X)=1/p, Var(X)=(1-p)/p?
negative binomial distribution

Let W, be the waiting time before the

r:th success. Then

fk)y=PW, =k)= ("_))p (1 —p)kT
k=rr+1

E(X> = 1pjp7 Var = (132)2

Exponential distribution:
Fl)=1—-e? 2>0

E(X)=1/), Var(X)=1/\2
Normal distribution:
1 emw?
f(x)zﬁe 202, —oo< T <00
E(X)=p, Var(X)=o>

Cauchy distribution:

flz) = m (no moments!)

3.2 Dependence

Joint distribution:

Fzy) = P(X < aY < y) =
ffoo ffoo f(u,v)dvdu
Lemma:

The random variables X and Y are in-
dependent if and only if

Ixy(@,y) = fx(x)fy(y) forallz,y € R
Fxy(z,y) = Fx(x)Fy(y) for all
z,y €R

Marginal distribution:

Fx(z) = P(X < z) = F(z,0) =
S (J72 fluy) dyde

Marginal densities: fx(z) =
P(U,({X =2} n{Y = y}) =
>y P( =z,Y =y)=2, fxy(z,y)
fx (@)= [T flz,y)dy

Lemma

E(g(X.Y)) =22, 9@ u)fxy(z,y)
Definition:

Cov(X,Y) = E[(X — EX)(Y — EY)]

3.3 Conditional distribu-
tions
Definition:

The conditional distribution of Y given
X =xis:

Fyx(ylz) =P(Y <y|X <)
= Jr A, {y: fr(y) > 0}

Theorem: Conditional expectation




P(X) =E(Y | X),
E (4(X)g(X)) =

3.4 Sums of random vari-
ables

Theorem:
P(X+Y =2) =Y, f(e.2 )
If X and Y are independent, then

PX +Y = 2) = fxiv(z) =
daIx@fy(z —x) = >, fx(z —
y)fy ()

3.5 Multivariate normal dis-

tribution:
_exp(—3(x—p)TV T (x—p))
fx) = V/(2m) det(V)
X = (X1, Xo,..., X,)"
M:(ﬂ17"'7u7l)7 E<XZ)ZN'L
V = (vi5), v = Cov(X;, X;)

4 Generating functions

Definition: Generating function

The generating function of the random
variable X is defined by:

G(s) = E(s¥)

Example: Generating functions
Constant: G(s) = s©

Bernoulli: G(s) = (1 —p) + ps
Geometric: %

Poisson: G(s) = =1

Theorem: expectation < G(s)

(a) E(s) = G'(1)

) EX(X-1)...(X—k+1)) = GH(1)
Theorem: independance

X and Y are independent, iff

Gx+v(s) = Gx(s)Gy(s)

4.1 Characteristic functions

Definition: moment generating function
M(t) = E(etY)

Definition: characteristic function

(1) = E(eitX)

Theorem: independance

X and Y are independent iff

Pxyy(t) = Px (1) Py (1)

Theorem: Y =aX + b

Oy (t) = e D (at)

Definition: joint characteristic function
CI)X,Y(S; t) — E<eisXeitY)

Independent if:

Dx y(s,t) = Px(s)Py(t) for all s and ¢
Theorem: moment gf <+ charact. fcn
Examples of characteristic functions:
Ber(p): ®(t) = q+ pe”

Bin distribution, bin(n,p): ®x(tt) =
(q+pe™)”

Exponential  distr.
I et ae A da
1 itx

Cauchy distr: ®(t) = - ffcoo e de

() =

Normal distr, N(0,1) d(t) =
E(e"™X) = [* \/% exp(itz — $2?)dz
Corollary:

Random variables X and Y have the
same characteristic function if and only
if they have the same distribution func-
tion. Theorem: Law of large Numbers
Let X1, X5, X5... be a sequence of iid
r.v’s with finite mean pu.

Their partial sums S,, = X1+ Xo+---+
X, satisfy %Sngm as n — 0o

Central Limit Theorem:

Let X1, X5, X5... be a sequence of iid
r.v’s with finite mean p and finite non-
zero 02, and let S, = X1+ Xo+-- -+ X,
then b

(S%\/%“)—U\/‘(O, 1) asn — o0

5 Markov chains

Definiton Markov Chain
P(X,=s|Xo=20,..Xpn—1=2,1) =
PX,| Xn—-1=2,-1)

Definition homogenous chain
P(Xn"_l:]an:Z):P(Xl:]‘
Xo =1)

Definition transition matrix

Theorem: P stochastic matrix

(a) P has non-negative entries

(b) P has row sum equal 1

n-step transition

pij(m7m+n) =P(Xmin =] | Xm =1)
Theorem Chapman Kolmogorov
pij(mm+n+r)=

>k Pik(mym+n)pgj(m+n,m+n+r)
SO

P(m,m+n)=P"

Definiton: mass funtion

" = P(X, =)

pm ) = p(m)Py, = p = p(0)P"
Definition: persistent, transient
persistent:
P(X,=iforsomen>1|Xy=1i)=1
transient:
P(X,=iforsomen>1|X,=1i)<1
Definition: first passage time

fl](n) = P(Xl 7£ jv'vanl # ]aXn =
J | Xo=1)

fij =302 fii(n)

Corollary: persistent, transient

State j is persistent if ) p;;(n) = oo
and = Y pi;j(n) = oo for all

State j is transient if > p;;(n) < oo
and = ) pi;(n) < oo for all ¢
Theorem: Generating functions

Pii(s) = Y ouro 8"pij(n)

Fij(s) = 30 8" fij(n)

then

(a) Pii(s) =1+ Fi(s)Pi(s)

(b) Pij(s) = Fij(s)Py;(s) if i # j
Definition: First visit time Tj
T; = min{n > 1 X, = j}
Definition: mean recurrence time p;

pi = E(T; | Xo = i) =), nfi(n)
Definition: null, non-null state

state i is null if p; = oo

state i is non-null if u; < oo

Theorem: nullness of a persistent state
A persistent state is null if and only if
pii(n) = 0(n — o0)

Definition: period d(z)

The period d(i) of a state i is defined
by d(i) = ged{n : p;i(n) > 0}. We call
i periodic if d(i) > 1 and aperiodic if
d(i)=1

Definition: Ergodic

A state is called ergodic if it is persis-
tent, non-null, and aperiodic.
Definition: (Inter-)communication

t — j if p;;(m) < 0 for some m

i< jifi—jand j — 1

Theorem: intercommunication

If i <» j then:

(a) 7 and j have the same period

(b) 7 is transient iff j is transient

(c) 4 is null peristent iff j is null peris-
tent

Definition: closed, irreducible

a set C of states is called:

(a) closed if p;; =0 foralli e C,j ¢ C
(b) irreducible if i «» j for all 4,5 € C
an absorbing state is a closed set with
one state

Theorem: Decomposition

State space S can be partitioned as
T=TUC;UCyU..., T is the set of
transient states, C; irreducible, closed
sets of persistent states

Lemma: finite S

If S is finite, then at least one state is
persisten and all persistent states are
non-null.

5.1 Stationary distributions

Definition: stationary distribution

7 is called stationary distribution if

(a) mj > 0forall j, > 7 =1

(b) m =7P, so m; =), mpi; for all j
Theorem: existence of stat. distribution
An irreducible chain has a stationary
distribution 7 iff all states are non-null
persistent.

Then  is unique and given by m; = p; !
Lemma: p;(k)

pi(k): mean number of visits of the
chain to the state i between two succes-
sive visits to state k.

Lemma: For any state k of an irre-




ducible persistent chain, the vector
p(k) satisfies p;(k) < oo for all ¢ and
p(k) = p(k)P

Theorem: irreducible, persistent

If the chain is irreducible and persis-
tent, there exists a positive x with
x = x P, which is unique to a multiplica-
tive constant. The chain is non-null if
> xi <ooand nullif Y7, x; = oo
Theorem: transient chain if

s any state of an irreducible chain. The
chain is transient iff there exists a non-
zero solution {y; : j # s}, with |y;| <1
for all 7, to the equation:

Yi =D jzs Pij¥s» iFs

Theorem: persistent if

s any state of an irreducible chain on
S =1{0,1,2,...}. The chain is persistent
if there exists a solution {y; : j # s} to
the inequalities

Yi = ZjJ’;ﬁspijyja { 7é S

Theorem: Limittheorem

For an irreducible aperiodic chain, we
have that

pij(n) —

1

M—jasn—>ooforalliandj

5.2 Reversibility

Theorem: Inverse Chain

Y with Y,, = Xn_,, is a Markov chain
with P(Y,11 = j | Y, = 1) = (35)pyi
Definition: Reversible chain

A chain is called reversible if

TiDij = T;Dji

Theorem: reversible — stationary

If there is a m with m;p;; = m;p;; then
7 is the stationary distribution of the
chain.

5.3 Poisson process

Definition: Poisson process

N(t) gives the number of events in time
t

Poisson process N(t) in S ={0,1,2,...},
if

(a) N(0) =05 if s < ¢ then N(s) < N(t)
(b) PIN(t+h)=n+m|N(t)=n) =
Ah+o(h)ifm=1

o(h)ifm>1

1—Ah+o(h)ifm=0

(¢) the emission per interval are inde-
pendent of the intervals before.
Theorem: Poisson distribution

N(t) has the Poisson distribution:
P(N(#) = 4 = G
Definition: arrivaltime, interarrivaltime
Arrival time: T, = inf{t: N(t) = n}
Interarrivaltime: X, = T, —
Theorem: Interarrivaltime

X1, Xo, ... are independent having expo-
nential distribution Definition:

Birth process — Poisson process with
intensities Ag, A1, - . .

n—1

Eq. Forward System of Equations:
Plij(t) = Ajmapij-1(t) — Ajpis ()

J=4, A1 =0, pi;(0) =0

Eq. Backward systems of equations:

P () = Xipit1,5(t) — Apis(t)

J=>i pij(0) =6y

Theorem:

The forward system has a unique solu-
tion which satisfies the backward equa-
tion.

5.4 Continuous Markov

chain

Definition: Continuous Markov chain
X is continuous Markov chain if:
P(X(tn) = j | X(01))it, o X(tn 1) =
infl) = P(X(tn) = | X(tnfl)
Definition: transistion probability
pis(s,8) = PX(B) = j | X(5) = i) for
s<t

homogeneous if p;;(s,t) = pi;(0,t — s)
Def: Generator Matrix

G = (9i), pij(h) = gizh if i # j and
pii = 1+ gijh

Eq. Forward systems of equations:

P/ =PG

Eq. Backward systems of equations:

Pt/ = G_Pt

Often solutions on the form P, =
exp(tQ)

Matrix Exponential:

exp(tG) = 30 Lgn

Definition:

Irreducible if for any pair 4, j, p;;(t) > 0
for some ¢

Definition: Stationary

m,m; >0, Zjﬂ'j =1 and
T=nP Vt>0

Claim: m =P, < G =0
Theorem:

Stationary if p;;(t) = m; as t = oo Vi, j
Not stationary if p;; — 0

6 Convergence of Ran-
dom Variables

Norm

(@) fll =0

() [[f=0if f=0
(c) lafll = lal - I £l

(@) [If +gll < £l + Mgl

convergent almost surely

X, =25 X,

if {fweN: X, (w) = X(w) asn — oo}
convergent in rth mean

X, 5 X

if E|X]| < oo and E(|X,, — X|") — 0 as
n — 00

convergent in probability

X, 5 x

it P(|1X,, — X|>¢) >0asn— o0

convergent in distribution

X, 4 x

it P(X, <z) > P(X <z)asn— o0
Theorem: implications

(X, &% x) = (X, D x) =
(X 2 X)

For r > s> 1:

(X, = X)= (X, > X)

Theorem: additional implications

(a) If X, EEN ¢, where c is const, then
X, f—> c

(b) If X, & X and P(|X,| < k) = 1
for all n and some k, then X,, — X for
allr > 1

(c) If P,(e) = P(|X,, — X|) > €) satis-
fies 3", Pn(e) < oo for all € > 0, then
X, 25 X

Theorem: Skorokhod’s representation t.

If X, DX asn— oo

then there exists a probability space and
random variable Y,,, Y with:

(a) Y,, and Y have distribution F,, F
1) Y, 25 Y as n — oo

Theorem: Convergence over function

If X, Ly X and g : R — R is continu-
ous then g(X,,) EEN 9(X)

Theorem: Equivalence

The following statements are equivalent:
(a) Xp 2 X

(b) E(g(X.) — E(g(X)) for al
bounded continuous functions g

(c) E(9(Xn)) — E(g(X)) for all func-
tions g of the form g(z) = f(z)l[44 ()
where f is continuous.

Theorem: Borel-Cantelli

Let A =n, U_, A be the event that
infinitely many of the A,, occur. Then:
(a) P(A)=0if Y P(A,) <0

(b) P(A) = 1if ), P(A,) = oo and
Ay, As, ... are independent.

Theorem:

X, — X and Y, — Y implies
X, +Y, - X +Y for convergence
a.s., r:th mean and probability. Not
generally true in distribution.

6.1 Laws of large numbers

Theorem:
X1,Xs,... is iid and E(X?) < oo and
E(X) = u then

L3 1 X; — pas. and in mean square
Theorem:
{X,} iid.
Then 237", X; 5 iff one of the fol-
lowing holds:

1) nP(|X1] >n) — 0 and f[_n‘n] zdF
as m — 0o

2) Char. Fcn. @(t) of X; is differen-

Distribution function F.



tiable at ¢t = 0 and ®'(0) = ip
Theorem: Strong law of large numbers
Xl,XQ, ... iid. Then

LS X = pas. asn — oo.

for some p, iff E|X1| < co. In this case
p=EX;

6.2 Law of iterated loga-
rithm

If X, Xo,... are iid with mean 0 and
variance 1 then

]P)(hm SUpP,, s 00 \/%;logn = 1) =1

6.3 Martingales

Definition: Martingale
Sn:n>11is called a martingale with
respect to the sequence X,, : n > 1, if

(a) E|S,| < >

(b) E(Sp1 | X1, Xo,y ..., X)) = Sy
Lemma:

E(X1 + XolY) = E(X41]Y) + E(X3]Y)
E(Xg(V)[Y) = g(V)E(X]Y), g
R*" - R

E(X|h(Y)) = E(X|Y) if h : R - R
is one-one

Lemma: Tower Property
E[E(X|Y1,Y2)[Y1] = E(X|Y1)

Lemma:

If {B; : 1 <i < n}is a partition of A
then E(X|A) = Y"1 | E(X|B;)P(B;)
Theorem: Martingale convergence

If {S,} is a Martingale with E(S? <
M < o0) for some M and all n then

a.s,L2

i5:5, — S

6.4 Prediction and condi-
tional expectation

Notation:

U, = VE(U?) = /(U,0)

U, V) = BUV), Uy —Ulls = 0 <
2

U, U

U+ Vi, <|U|ly + V],

Def.

X,Y rv. E(Y?) < co. The minimum
mean square predictor of ¥ given X is
Y =h(X)=min||Y -Y||,
Theorem: R
If a (linear) space H is closed and Y € H
then min HY — Y/H exists

2
Projection Theorem:
H is a closed linear space and Y
E(Y?) < 00
For M € H then E((Y —M)Z) =0 &
1Y =M, <|Y -Z|,VZ e H
Theorem:
Let X and Y be r.v., BE(Y?) < oo.

The best predictor of Y given X is
E(X]Y)

7 Stochastic processes

Definition: Renewal process

N = {N(t):t>0} is a process for
which N(t) = max{n : T,, <t} where
T‘OZO7 Tn:X1+X2+"'+X"fOI‘
n > 1, and the X,, are iid non-negative
r.v.’s

8 Stationary processes

Definition:

The Autocovariance function

c(t,t +h) = Cov(X(t), X(t+ h))

Definition: The process X {X(¢) :

t > 0} taking real values is called

strongly stationary if the families

{X(t1)7 X(tg), ceey X(tn)} and {X(t1 +

h), X (to+h),..., X (t,+h)} has the same

joint distribution for all ¢y, o, ..., ¢, and

h>0

Definition: The process X = {X(¢) :

t > 0} taking real values is called

weakly stationary if, for all ¢; and

to and h > 0 :E(X(#t1)) = E(X(t2))

and Cov(X(t1),X(t2)) = Cov(X(t1 +

h), X (t2 + h)), thus if and only if it has

constant means and its autocovariance

function satisfies ¢(t,t + h) = ¢(0, h)

Definition:

The covariance

Cland CQ is

COV(Cl, CQ) =K ((Cl — ECl)(CQ — ECQ)

Theorem:

{X} real, stationary with zero mean

and autocovariance ¢(m).

The best predictor from the class of lin-

ear functions of the subsequence { X} _,

is

Xrpk = Zf:o a; Xp—

where 7 a;c(]i — j|) = c(k + j) for

0<j<s

Definition:

Autocorrelation function of a weakly

stationary process with autocovariance

function c(t) is

p(t) = —CHXOXW) _ _ e)
V/Var(X(0))Var(x(¢)) ~ <(0)

Theorem:

Spectral theorem: Weakly stationary

process X with strictly pos. o2 is the

char. function of some distribution F

whenever p(t) is continuous at ¢t = 0

plt) = [, AP (M)

F is called the spectral distribution

function.

Ergodic theorem:

X is strongly stationary such that

E|X1] < oo there exists a rv Y

of complex-valued

)

with the same mean as X,, such that
%Z?Zl X; =Y as and in mean
Weakly stationary processes:

If X = {X,, : n > 1} is a weakly station-
ary process, there exists a Y such that
E(Y) = E(X;) and £ 37 | X;75Y.

8.1 Gaussian processes

Definition:
A real valued c.t. process is called
Gaussian if each finite dimensional

vector (X (t1), X (t2),..., X (tn)) has
the multivariate normal distribution
N(M(t)av(t))a t:(tlatQa-'-atn)
Theorem:

The Gaussian process X is stationary
iff. E(X(t)) is constant for all ¢ and
V(t)=V(t+h) forallt and h >0

9 Inequalities

Cauchy-Schwarz:

(E(XY))? < E(X2)E(Y?)

with equality if and only if aX +bY = 1.
Jensen’s inequality:

Given a convex function J(z) and ar.v.
X with mean p: E(J(X)) > J(u)
Markov’s inequality

P(|X]|>a) < %X‘ for any a > 0

h: (R) — [0, 00] non-negative fcn, then
P(h(X) > a) < Br) vy 5

General Markov’s inequality:

h: (R) — [0, M] non-negative function
bounded by some M. Then

P(h(X) >a) < BBXDa g <y < 1
Chebyshev’s Inequality:

2
P(X|>a)< 2 jra >0

Theorem: Holder’s inequality
If p¢g>1and p~! +¢ 1 =1 then
EIXY]| < (E|X?|)5 (E[Y?))7
Minkowski’s inequality:
If p > 1 then

1 1
[E(X +Y[P)]? < (E[XP])> + (E[Y?
Minkowski 2:
E(|X +Y[P) < Cp [E|XP| + E[Y?]
where p > 0 and

1
)@

1 0<p<l1

Cp — { 2p71

p>0
Kolomogorov’s inequality:

Let {X,} be iid with zero means and
variances 02. Then for € > 0

2 2
P(1IE?<Xn|X1 +-+ X >e) < =

Doo_b—_Kolomogorov’s inequality:
If {S,} is a martingale, then for any
e>0

; <
Fl il = o) =

E(S7)
€2




