1 Sets

$(A \cup B) \cup C=A \cup(B \cup C)$
$(A \cup B)^{C}=A^{C} \cap B^{C}$
Definition: σ-field
\mathcal{F} subset of Ω is a $\sigma-$ field, if
(a) $0 \in \mathcal{F}$
(b) if $A_{1}, A_{2}, \ldots \in \mathcal{F}$ then $\cup_{i=1}^{\infty} A_{i} \in \mathcal{F}$
(c) if $A \in \mathcal{F}$ then $A^{c} \in \mathcal{F}$

2 Probability

$\mathbb{P}\left(A^{C}\right)=1-\mathbb{P}(A)$
If $B \supseteq A$ then $\mathbb{P}(B)=\mathbb{P}(A)+\mathbb{P}(B \backslash A) \geq$ $\mathbb{P}(A)$
$\mathbb{P}(A \cup B)=\mathbb{P}(A)+\mathbb{P}(B)-\mathbb{P}(A \cap B)$
More generally:
$\mathbb{P}\left(\bigcup_{i=1}^{n} A_{i}\right) \quad=\quad \sum_{i} \mathbb{P}\left(A_{i}\right) \quad-$ $\sum_{i<j} \mathbb{P}\left(A_{i} \cap A_{j}\right)-\sum_{i<j<k} \mathbb{P}\left(A_{i} \cap A_{j} \cap\right.$ $\cdots+(-1)^{n+1} \mathbb{P}\left(A_{1} \cap A_{2} \cap \cdots \cap A_{n}\right)$
Lemma 5, p. 7: Let $A_{1} \subseteq A_{2} \subseteq \ldots$, and write A for their limit:
$A=\bigcup_{i=1}^{\infty} A_{i}=\lim _{i \rightarrow \infty} A_{i}$ then $\mathbb{P}(A)=\lim _{i \rightarrow \infty} \mathbb{P}\left(A_{i}\right)$
Similarly, $B_{1} \supseteq B_{2} \supseteq B_{3} \supseteq \ldots$, then
$B=\bigcap_{i=1}^{\infty} B_{i}=\lim _{i \rightarrow \infty} B_{i}$
satisfies $\mathbb{P}(B)=\lim _{i \rightarrow \infty} \mathbb{P}\left(B_{i}\right)$ Multiplication rule
$\overline{P(A, B)}=P(A) P(B \mid A)$
Conditional Probability
$P(A \mid B)=\frac{P(A \cap B)}{P(B)}$
$P(A \mid B, C, \ldots)=\frac{P(A, B, C, \ldots)}{P(B, C, \ldots)}$
Bayes formula
$\overline{\mathbb{P}}(A \mid B)=\mathbb{P}(B \mid A) \mathbb{P}(A) \mathbb{P}(B)$
Total probability
$\overline{P(A)}=P(A \mid B) P(B)$
$+P\left(A \mid B^{C}\right) P\left(B^{C}\right)$
$P(A)=\sum_{i=1}^{n} P\left(A \mid B_{i}\right) P\left(B_{i}\right)$
Definition 1, p. 13:
A family $\left\{A_{i}: i \in I\right\}$ is independent if:
$\mathbb{P}\left(\bigcap_{i \in J} A_{i}\right)=\prod_{i \in J} \mathbb{P}\left(A_{i}\right)$ For all finite subset J of I

3 Random Variable

Lemma 11, p. 30:
Let F be a distribution function of X, then
(a) $\mathbb{P}(X>x)=1-F(x)$
(b) $\mathbb{P}(x<X \leq y)=F(y)-F(x)$
(c) $F(X=x)=F(x)-\lim _{y \rightarrow x} F(y)$

Marginal distribution:
$\varlimsup_{\lim _{y \rightarrow \infty} F_{X, Y}(x, y)=} F_{X}(x)$
$\lim _{x \rightarrow \infty} F_{X, Y}(x, y)=F_{Y}(y)$
Lemma 5, p. 39:
The joint distribution function $F_{X, Y}$ of the random vector (X, Y) has the following properties:

$$
\begin{aligned}
& \lim _{x, y \rightarrow-\infty} F_{X, Y}(x, y)=0 \\
& \lim _{x, y \rightarrow \infty} F_{X, Y}(x, y)=1
\end{aligned}
$$

if $\left(x_{1}, y_{1}\right) \leq\left(x_{2}, y_{2}\right)$ then \quad by: $F_{X, Y}\left(x_{1}, y_{1}\right) \leq F_{X, Y}\left(x_{2}, y_{2}\right)$
$F_{X, Y}$ is continuous from above, in that: $F_{X, Y}(x+u, y+v) \rightarrow F_{X, Y}(x, y)$ as $u, v \rightarrow 0$
Theorem:
If X and Y are independent and g, h : $\mathbb{R} \rightarrow \mathbb{R}$, then $g(X)$ and $h(Y)$ are independent too.
Definition:
The expectation of the random variable X is:
$\mathbb{E}(X)=\sum_{x: f(x)>0} x f(x)$
Lemma:
If X has mass function f and $g: \mathbb{R} \rightarrow \mathbb{R}$, then:
$\mathbb{E}(g(X))=\sum_{x} g(x) f(x)$
Continous counterpart:
$E(g(X))=\int_{-\infty}^{\infty} g(x) f_{X}(x) d x$
Definition:
If k is a positive integer, the k :th moment m_{k} of X is defined $m_{k}=\mathbb{E}\left(X^{k}\right)$.
The k :th central moment is $\sigma_{k}=$ $\mathbb{E}\left(\left(X-m_{1}\right)^{k}\right)$
Theorem:
The expectation operator \mathbb{E} :
(a) If $X \geq 0$ then $\mathbb{E}(X) \geq 0$
(b) If $a, b \in \mathbb{R}$ then $\mathbb{E}(a X+b Y)=$ $a \mathbb{E}(X)+b \mathbb{E}(Y)$
Lemma:
If X and Y are independent, then $\mathbb{E}(X Y)=\mathbb{E}(X) \mathbb{E}(Y)$
Definition:
X and Y are uncorrelated if $\mathbb{E}(X Y)=$ $\mathbb{E}(X) \mathbb{E}(Y)$
Theorem:
For random variables X and Y
(a) $\operatorname{Var}(a X)=a^{2} \operatorname{Var}(X)$ for $a \in \mathbb{R}$
(b) $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$ if X and Y are uncorrelated.
Indicator function:
$\mathbb{E} I_{A}=\mathbb{P}(A)$
distribution function
$F: \overline{R->[0,1]: F(x)=} P(X \leq x)$ mass function

3.1 Distribution functions

Constant variable
$X(\omega)=c: F(X)=\sigma(x-c)$
Bernoulli distribution $\operatorname{Bern}(p)$
A coin is tossed one time and shows head with probability p with $X(H)=1$
and $X(T)=0$
$F(X)=0 \quad x<0$
$F(X)=1-p \quad 0 \leq x<1$
$F(X)=1 \quad x \geq 1$
$\mathbb{E}(X)=p, \quad \operatorname{Var}(X)=p(1-p)$
Binomial distribution $\operatorname{bin}(n, k)$
A coin is tossed n times and a head turns up each time with probability p. The total number of heads is discribed
$f(k)=\binom{n}{k} p^{k} q^{n-k}$
$\mathbb{E}(X)=n p, \quad \operatorname{Var}(X)=n p(1-p)$
Poisson distribution
$f(k)=\frac{\lambda^{k}}{k!} \exp (-\lambda)$
$\mathbb{E}(X)=\operatorname{Var}(X)=\lambda$
Geometric distribution
Independent Bernoulli trials are performed. Let W be the waiting time before the first succes occurs. Then
$f(k)=P(W=k)=p(1-p)^{k-1}$
$\mathbb{E}(X)=1 / p, \quad \operatorname{Var}(X)=(1-p) / p^{2}$
negative binomial distribution
Let W_{r} be the waiting time before the r :th success. Then
$f(k)=P\left(W_{r}=k\right)=\binom{k-1}{r-1} p^{r}(1-p)^{k-r}$ $k=r, r+1$
$\mathbb{E}(X)=\frac{p r}{1-p}, \quad$ Var $=\frac{p r}{(1-p)^{2}}$
Exponential distribution:
$\bar{F}(x)=1-e^{-\lambda x}, \quad x \geq 0$
$\mathbb{E}(X)=1 / \lambda, \quad \operatorname{Var}(X)=1 / \lambda^{2}$
Normal distribution:
$f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}, \quad-\infty<x<\infty$
$\mathbb{E}(X)=\mu, \quad \operatorname{Var}(X)=\sigma^{2}$
Cauchy distribution:
$f(x)=\frac{1}{\pi\left(1+x^{2}\right)}$ (no moments!)

3.2 Dependence

Joint distribution:
$F(x, y)=\mathbb{P}(X \leq x, Y \leq y)=$
$\int_{-\infty}^{y} \int_{-\infty}^{x} f(u, v) d v d u$
Lemma:
The random variables X and Y are independent if and only if
$f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)$ for all $x, y \in \mathbb{R}$ $F_{X, Y}(x, y)=F_{X}(x) F_{Y}(y)$ for all $x, y \in \mathbb{R}$
Marginal distribution:
$\overline{F_{X}(x)}=\mathbb{P}(X \leq x)=F(x, \infty)=$ $\int_{-\infty}^{x}\left(\int_{-\infty}^{-\infty} f(u, y) d y d x\right.$
Marginal densities: $\quad f_{X}(x) \quad=$
$\mathbb{P}\left(\bigcup_{y}(\{X=x\} \cap\{Y=y\})\right)=$
$\sum_{y} \mathbb{P}(X=x, Y=y)=\sum_{y} f_{X, Y}(x, y)$
$f_{X}(x)=\int_{-\infty}^{\infty} f(x, y) d y$
Lemma:
$\mathbb{E}(g(X, Y))=\sum_{x, y} g(x, y) f_{X, Y}(x, y)$
Definition:
$\operatorname{Cov}(X, Y)=\mathbb{E}[(X-\mathbb{E} X)(Y-\mathbb{E} Y)]$

3.3 Conditional distributions

Definition:

The conditional distribution of Y given $X=x$ is:
$F_{Y \mid X}(y \mid x)=\mathbb{P}(Y \leq y \mid X \leq x)$
$=\quad \int_{-\infty}^{x} \frac{f(v, y)}{f_{Y}(y)} d v, \quad\left\{y: f_{Y}(y)>0\right\}$
Theorem: Conditional expectation
$\psi(X)=\mathbb{E}(Y \mid X), \quad \mathbb{E}(\psi(X))=\mathbb{E}(Y)$ $\mathbb{E}(\psi(X) g(X))=\mathbb{E}(Y g(X))$

3.4 Sums of random variables

Theorem:
$\mathbb{P}(X+Y=z)=\sum_{x} f(x, z-x)$
If X and Y are independent, then
$\mathbb{P}(X+Y=z)=f_{X+Y}(z)=$ $\sum_{x} f_{X}(x) f_{Y}(z-x)=\sum_{y} f_{X}(z-$ y) $f_{Y}(y)$

3.5 Multivariate normal distribution:

$f(\mathbf{x})=\frac{\exp \left(-\frac{1}{2}(\mathbf{x}-\mu)^{T} \mathbf{V}^{-1}(\mathbf{x}-\mu)\right)}{\sqrt{(2 \pi)^{n} \operatorname{det}(\mathbf{V})}}$
$\mathbf{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)^{T}$
$\mu=\left(\mu_{1}, \ldots, \mu_{n}\right), \quad \mathbb{E}\left(X_{i}\right)=\mu_{i}$
$\mathbf{V}=\left(v_{i j}\right), \quad v_{i j}=\operatorname{Cov}\left(X_{i}, X_{j}\right)$

4 Generating functions

Definition: Generating function
The generating function of the random variable X is defined by:
$G(s)=\mathbb{E}\left(s^{X}\right)$
Example: Generating functions
Constant: $G(s)=s^{c}$
Bernoulli: $G(s)=(1-p)+p s$
Geometric: $\frac{p s}{1-s(1-p)}$
Poisson: $G(s)=e^{\lambda(s-1)}$
Theorem: expectation $\leftrightarrow G(s)$
(a) $\mathbb{E}(s)=G^{\prime}(1)$
(b) $\mathbb{E}(X(X-1) \ldots(X-k+1))=G^{(k)}(1)$

Theorem: independance
X and Y are independent, iff
$G_{X+Y}(s)=G_{X}(s) G_{Y}(s)$

4.1 Characteristic functions

Definition: moment generating function
$M(t)=\mathbb{E}\left(e^{t X}\right)$
Definition: characteristic function
$\Phi(t)=\mathbb{E}\left(e^{i t X}\right)$
Theorem: independance
\bar{X} and Y are independent iff
$\Phi_{X+Y}(t)=\Phi_{X}(t) \Phi_{Y}(t)$
Theorem: $Y=a X+b$
$\Phi_{Y}(t)=e^{i t b} \Phi_{X}(a t)$
Definition: joint characteristic function
$\Phi_{X, Y}(s, t)=\mathbb{E}\left(e^{i s X} e^{i t Y}\right)$
Independent if:
$\Phi_{X, Y}(s, t)=\Phi_{X}(s) \Phi_{Y}(t)$ for all s and t
Theorem: moment gf \leftrightarrow charact. fcn
Examples of characteristic functions:
$\operatorname{Ber}(p): \Phi(t)=q+p e^{i t}$
Bin distribution, $\operatorname{bin}(n, p): \Phi_{X}(t t)=$ $\left(q+p e^{i t}\right)^{n}$

Exponential distr. $\quad \Phi(t)=\mid F_{i j}(s)=\sum_{n=0}^{\infty} s^{n} f_{i j}(n)$ $\int_{0}^{\infty} e^{i t x} \lambda e^{-\lambda x} d x$
Cauchy distr: $\Phi(t)=\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{e^{i t x}}{\left(1+x^{2}\right)} d x$ Normal distr, $\mathcal{N}(0,1): \quad \Phi(t)=$ $\mathbb{E}\left(e^{i t X}\right)=\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} \exp \left(\right.$ itx $\left.-\frac{1}{2} x^{2}\right) d x$ Corollary:
Random variables X and Y have the same characteristic function if and only if they have the same distribution function. Theorem: Law of large Numbers
Let $\overline{X_{1}, X_{2}, X_{3} \ldots \text { be a sequence of iid }}$ r.v's with finite mean μ.

Their partial sums $S_{n}=X_{1}+X_{2}+\cdots+$ X_{n} satisfy $\frac{1}{n} S_{n} \xrightarrow{D} \mu$ as $n \rightarrow \infty$
Central Limit Theorem:
Let $X_{1}, X_{2}, X_{3} \ldots$ be a sequence of iid r.v's with finite mean μ and finite nonzero σ^{2}, and let $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$ then
$\frac{\left(S_{n}-n \mu\right)}{\sqrt{n \sigma^{2}}} \xrightarrow{D} \mathcal{N}(0,1)$ as $n \rightarrow \infty$

5 Markov chains

Definiton Markov Chain
$P\left(X_{n}=s \mid X_{0}=x_{0}, \ldots X_{n}-1=x_{n} 1\right)=$ $P\left(X_{n} \mid X_{n}-1=x_{n}-1\right)$
Definition homogenous chain
$\overline{P\left(X_{n}+1=j \mid X_{n}=i\right)=P}\left(X_{1}=j \mid\right.$ $\left.X_{0}=i\right)$
Definition transition matrix
$\mathbf{P}=\left(p_{i j}\right)$ with
$p_{i j}=P\left(X_{n+1}=j \mid X_{n}=i\right)$
Theorem: P stochastic matrix
(a) \mathbf{P} has non-negative entries
(b) \mathbf{P} has row sum equal 1
n-step transition
$\overline{p_{i j}(m, m+n)=} P\left(X_{m+n}=j \mid X_{m}=i\right)$ Theorem Chapman Kolmogorov
$p_{i j}(m . m+n+r)=$
$\sum_{k} p_{i k}(m, m+n) p_{k j}(m+n, m+n+r)$ so
$\mathbf{P}(m, m+n)=\mathbf{P}^{n}$
Definiton: mass funtion
$\mu_{i}^{(n)}=P\left(X_{n}=i\right)$
$\mu^{(m+n)}=\mu(m) \mathbf{P}_{n} \Rightarrow \mu^{(n)}=\mu(0) \mathbf{P}^{n}$
Definition: persistent, transient
persistent:
$P\left(X_{n}=i\right.$ for some $\left.n \geq 1 \mid X_{0}=i\right)=1$ transient:
$P\left(X_{n}=i\right.$ for some $\left.n \geq 1 \mid X_{0}=i\right)<1$
Definition: first passage time
$\overline{f_{i j}(n)}=P\left(X_{1} \neq j, ., X_{n-1} \neq j, X_{n}=\right.$ $\left.j \mid X_{0}=i\right)$
$f_{i j}:=\sum_{n=1}^{\infty} f_{i j}(n)$
Corollary: persistent, transient
$\overline{\text { State } j \text { is persistent if } \sum_{n} p_{j j}(n)=\infty, ~(n) ~}$ and $\Rightarrow \sum_{n} p_{i j}(n)=\infty$ for all i
State j is transient if $\sum_{n} p_{j j}(n)<\infty$
and $\Rightarrow \sum_{n} p_{i j}(n)<\infty$ for all i
Theorem: Generating functions
$\overline{P_{i j}(s)}=\sum_{n=0}^{\infty} s^{n} p_{i j}(n)$
then
(a) $P_{i i}(s)=1+F_{i i}(s) P_{i i}(s)$
(b) $P_{i j}(s)=F_{i j}(s) P_{i j}(s)$ if $i \neq j$

Definition: First visit time T_{j}
$T_{j}:=\min \left\{n \geq 1: X_{n}=j\right\}$ Definition: mean recurrence time μ_{i}
$\mu_{i}:=E\left(T_{i} \mid X_{0}=i\right)=\sum_{n} n f_{i i}(n)$
Definition: null, non-null state
state i is null if $\mu_{i}=\infty$
state i is non-null if $\mu_{i}<\infty$
Theorem: nullness of a persistent state
A persistent state is null if and only if $p_{i i}(n) \rightarrow 0(n \rightarrow \infty)$
Definition: period $d(i)$
The period $d(i)$ of a state i is defined by $d(i)=\operatorname{gcd}\left\{n: p_{i i}(n)>0\right\}$. We call i periodic if $d(i)>1$ and aperiodic if $d(i)=1$
Definition: Ergodic
A state is called ergodic if it is persistent, non-null, and aperiodic.
Definition: (Inter-)communication
$i \rightarrow j$ if $p_{i j}(m)<0$ for some m
$i \leftrightarrow j$ if $i \rightarrow j$ and $j \rightarrow i$
Theorem: intercommunication
If $i \leftrightarrow j$ then:
(a) i and j have the same period
(b) i is transient iff j is transient
(c) i is null peristent iff j is null peristent
Definition: closed, irreducible
a set C of states is called:
(a) closed if $p_{i j}=0$ for all $i \in C, j \notin C$
(b) irreducible if $i \leftrightarrow j$ for all $i, j \in C$
an absorbing state is a closed set with one state
Theorem: Decomposition
State space S can be partitioned as $T=T \cup C_{1} \cup C_{2} \cup \ldots, T$ is the set of transient states, C_{i} irreducible, closed sets of persistent states
Lemma: finite S
If S is finite, then at least one state is persisten and all persistent states are non-null.

5.1 Stationary distributions

Definition: stationary distribution π is called stationary distribution if
(a) $\pi_{j} \geq 0$ for all $j, \sum_{j} \pi_{j}=1$
(b) $\pi=\pi P$, so $\pi_{j}=\sum_{i} \pi_{i} p_{i j}$ for all j

Theorem: existence of stat. distribution An irreducible chain has a stationary distribution π iff all states are non-null persistent.
Then π is unique and given by $\pi_{i}=\mu_{i}^{-1}$ Lemma: $\rho_{i}(k)$
$\overline{\rho_{i}(k): ~ m e a n ~ n u m b e r ~ o f ~ v i s i t s ~ o f ~ t h e ~}$ chain to the state i between two successive visits to state k.
Lemma: For any state k of an irre-
ducible persistent chain, the vector $\rho(k)$ satisfies $\rho_{i}(k)<\infty$ for all i and $\rho(k)=\rho(k) P$
Theorem: irreducible, persistent
If the chain is irreducible and persistent, there exists a positive x with $x=x P$, which is unique to a multiplicative constant. The chain is non-null if $\sum_{i} x_{i}<\infty$ and null if $\sum_{i} x_{i}=\infty$
Theorem: transient chain if
s any state of an irreducible chain. The chain is transient iff there exists a nonzero solution $\left\{y_{j}: j \neq s\right\}$, with $\left|y_{j}\right| \leq 1$ for all j, to the equation:
$y_{i}=\sum_{j, j \neq s} p_{i j} y_{j}, \quad i \neq s$
Theorem: persistent if
s any state of an irreducible chain on $S=\{0,1,2, \ldots\}$. The chain is persistent if there exists a solution $\left\{y_{j}: j \neq s\right\}$ to the inequalities
$y_{i} \geq \sum_{j, j \neq s} p_{i j} y_{j}, \quad i \neq s$
Theorem: Limittheorem
For an irreducible aperiodic chain, we have that
$p_{i j}(n) \rightarrow \frac{1}{\mu_{j}}$ as $n \rightarrow \infty$ for all i and j

5.2 Reversibility

Theorem: Inverse Chain
Y with $Y_{n}=X_{N-n}$ is a Markov chain with $P\left(Y_{n+1}=j \mid Y_{n}=i\right)=\left(\frac{\pi_{j}}{\pi_{i}}\right) p_{j i}$
Definition: Reversible chain
A chain is called reversible if
$\pi_{i} p_{i j}=\pi_{j} p_{j i}$
Theorem: reversible \rightarrow stationary
If there is a π with $\pi_{i} p_{i j}=\pi_{j} p_{j i}$ then π is the stationary distribution of the chain.

5.3 Poisson process

Definition: Poisson process
$\bar{N}(t)$ gives the number of events in time t
Poisson process $N(t)$ in $S=\{0,1,2, \ldots\}$, if
(a) $N(0)=0$; if $s<t$ then $N(s) \leq N(t)$
(b) $P(N(t+h)=n+m \mid N(t)=n)=$
$\lambda h+o(h)$ if $m=1$
$o(h)$ if $m>1$
$1-\lambda h+o(h)$ if $m=0$
(c) the emission per interval are independent of the intervals before.
Theorem: Poisson distribution
$N(t)$ has the Poisson distribution:
$P(N(t)=j)=\frac{(\lambda t)^{j}}{j!} e^{-\lambda t}$
Definition: arrivaltime, interarrivaltime Arrival time: $T_{n}=\inf \{t: N(t)=n\}$ Interarrivaltime: $\quad X_{n}=T_{n}-T_{n-1}$ Theorem: Interarrivaltime
X_{1}, X_{2}, \ldots are independent having exponential distribution Definition:
Birth process \rightarrow Poisson process with intensities $\lambda_{0}, \lambda_{1}, \ldots$

Eq. Forward System of Equations:
$\bar{p}_{i j}^{\prime}(t)=\lambda_{j-1} p_{i, j-1}(t)-\lambda_{j} p_{i j}(t)$ $j \geq i, \quad \lambda_{-1}=0, \quad p_{i j}(0)=\delta_{i j}$
Eq. Backward systems of equations:
$\overline{p_{i j}^{\prime}(t)=\lambda_{i} p_{i+1, j}(t)-\lambda p_{i j}(t)}$
$j \geq i \quad p_{i j}(0)=\delta_{i j}$

Theorem:

The forward system has a unique solution which satisfies the backward equation.

5.4 Continuous chain

Definition: Continuous Markov chain
X is continuous Markov chain if:
$P\left(X\left(t_{n}\right)=j \mid X\left(t_{1}\right)\right) i_{1}, \ldots, X\left(t_{n-1}\right)=$
$\left.i_{n-1}\right)=P\left(X\left(t_{n}\right)=j \mid X\left(t_{n-1}\right)\right.$
Definition: transistion probability
$\overline{p_{i j}(s, t)}=P(X(t)=j \mid X(s)=i)$ for $s \leq t$
homogeneous if $p_{i j}(s, t)=p_{i j}(0, t-s)$
Def: Generator Matrix
$G=\left(g_{i j}\right), \quad p_{i j}(h)=g_{i j} h$ if $i \neq j$ and $p_{i i}=1+g_{i j} h$
Eq. Forward systems of equations: $\overline{P_{t}^{\prime}}=P_{t} G$
Eq. Backward systems of equations: $\overline{P_{t}^{\prime}}=G P_{t}$
Often solutions on the form $P_{t}=$ $\exp (t G)$
Matrix Exponential:
$\overline{\exp (t G)}=\sum_{n=1}^{\infty} \frac{t^{n}}{n!} G^{n}$
Definition:
Irreducible if for any pair $i, j, p_{i j}(t)>0$ for some t
Definition: Stationary
$\overline{\pi,} \pi_{j} \geq 0, \quad \sum_{j} \pi_{j}=1$ and
$\pi=\pi P_{t} \forall t \geq 0$
Claim: $\pi=\pi P_{t} \Leftrightarrow \pi G=0$

Theorem:

Stationary if $p_{i j}(t) \rightarrow \pi_{j}$ as $t \rightarrow \infty \forall i, j$
Not stationary if $p_{i j} \rightarrow 0$

6 Convergence of Random Variables

Norm
(a) $\|f\| \geq 0$
(b) $\|f\|=0$ iff $f=0$
(c) $\|a f\|=|a| \cdot\|f\|$
(d) $\|f+g\| \leq\|f\|+\|g\|$
convergent almost surely
$X_{n} \xrightarrow{\text { a.s. }} X$,
if $\left\{\omega \in \Omega: X_{n}(\omega) \rightarrow X(\omega)\right.$ as $\left.n \rightarrow \infty\right\}$
convergent in r th mean
$X_{n} \xrightarrow{r} X$
if $\mathbb{E}\left|X_{n}^{r}\right|<\infty$ and $\mathbb{E}\left(\left|X_{n}-X\right|^{r}\right) \rightarrow 0$ as $n \rightarrow \infty$
convergent in probability
$X_{n} \xrightarrow{P} X$
if $P\left(\left|X_{n}-X\right|>\epsilon\right) \rightarrow 0$ as $n \rightarrow \infty$
convergent in distribution
$X_{n} \xrightarrow{d} X$
if $P\left(X_{n}<x\right) \rightarrow P(X<x)$ as $n \rightarrow \infty$
Theorem: implications
$\left(X_{n} \xrightarrow{\text { a.s. } / r} X\right) \Rightarrow\left(X_{n} \xrightarrow{P} X\right) \Rightarrow$
$\left(X_{n} \xrightarrow{D} X\right)$
For $r>s \geq 1$:
$\left(X_{n} \xrightarrow{r} X\right) \Rightarrow\left(X_{n} \xrightarrow{s} X\right)$
Theorem: additional implications
(a) If $X_{n} \xrightarrow{D} c$, where c is const, then $X_{n} \xrightarrow{P} c$
(b) If $X_{n} \xrightarrow{P} X$ and $P\left(\left|X_{n}\right| \leq k\right)=1$ for all n and some k , then $X_{n} \xrightarrow{r} X$ for all $r \geq 1$
(c) If $\left.P_{n}(\epsilon)=P\left(\left|X_{n}-X\right|\right)>\epsilon\right)$ satisfies $\sum_{n} P_{n}(\epsilon)<\infty$ for all $\epsilon>0$, then $X_{n} \xrightarrow{\text { a.s. }} X$
Theorem: Skorokhod's representation t.
If $X_{n} \xrightarrow{D} X$ as $n \rightarrow \infty$
then there exists a probability space and random variable Y_{n}, Y with:
(a) Y_{n} and Y have distribution F_{n}, F
(b) $Y_{n} \xrightarrow{\text { a.s. }} Y$ as $n \rightarrow \infty$

Theorem: Convergence over function
If $X_{n} \xrightarrow{D} X$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ is continuous then $g\left(X_{n}\right) \xrightarrow{D} g(X)$
Theorem: Equivalence
The following statements are equivalent:
(a) $X_{n} \xrightarrow{D} X$
(b) $\mathbb{E}\left(g\left(X_{n}\right)\right) \rightarrow \mathbb{E}(g(X))$ for all bounded continuous functions g
(c) $\mathbb{E}\left(g\left(X_{n}\right)\right) \rightarrow \mathbb{E}(g(X))$ for all functions g of the form $g(x)=f(x) I_{[a, b]}(x)$ where f is continuous.

Theorem: Borel-Cantelli

Let $A=\cap_{n} \cup_{m=n}^{\infty} A_{m}$ be the event that infinitely many of the A_{n} occur. Then:
(a) $P(A)=0$ if $\sum_{n} P\left(A_{n}\right)<\infty$
(b) $P(A)=1$ if $\sum_{n} P\left(A_{n}\right)=\infty$ and A_{1}, A_{2}, \ldots are independent.
Theorem:
$X_{n} \rightarrow X$ and $Y_{n} \rightarrow Y$ implies $X_{n}+Y_{n} \rightarrow X+Y$ for convergence a.s., r:th mean and probability. Not generally true in distribution.

6.1 Laws of large numbers

Theorem:

X_{1}, X_{2}, \ldots is iid and $\mathbb{E}\left(X_{i}^{2}\right)<\infty$ and $\mathbb{E}(X)=\mu$ then
$\frac{1}{n} \sum_{i=1}^{n} X_{i} \rightarrow \mu$ a.s. and in mean square Theorem:
$\left\{X_{n}\right\}$ iid. Distribution function F. Then $\frac{1}{n} \sum_{i=1}^{n} X_{i} \xrightarrow{P} \mu$ iff one of the following holds:

1) $n P\left(\left|X_{1}\right|>n\right) \rightarrow 0$ and $\int_{[-n, n]} x d F$
as $n \rightarrow \infty$
2) Char. Fcn. $\Phi(t)$ of X_{i} is differen-
tiable at $t=0$ and $\Phi^{\prime}(0)=i \mu$
Theorem: Strong law of large numbers X_{1}, X_{2}, \ldots iid. Then
$\frac{1}{n} \sum_{i=1}^{n} X_{i} \rightarrow \mu$ a.s. as $n \rightarrow \infty$.
for some μ, iff $\mathbb{E}\left|X_{1}\right|<\infty$. In this case $\mu=\mathbb{E} X_{1}$

6.2 Law of iterated logarithm

If X_{1}, X_{2}, \ldots are iid with mean 0 and variance 1 then
$\mathbb{P}\left(\lim \sup _{n \rightarrow \infty} \frac{S_{n}}{\sqrt{2 n \operatorname{loglogn}}}=1\right)=1$

6.3 Martingales

Definition: Martingale
$\overline{S_{n}}: n \geq 1$ is called a martingale with respect to the sequence $X_{n}: n \geq 1$, if
(a) $\mathbb{E}\left|S_{n}\right|<\infty$
(b) $\mathbb{E}\left(S_{n+1} \mid X_{1}, X_{2}, \ldots, X_{n}\right)=S_{n}$

Lemma:
$\mathbb{E}\left(X_{1}+X_{2} \mid Y\right)=\mathbb{E}\left(X_{1} \mid Y\right)+E\left(X_{2} \mid Y\right)$
$\mathbb{E}(X g(Y) \mid Y)=g(Y) \mathbb{E}(X \mid Y), \quad g \quad:$
$\mathbb{R}^{n} \rightarrow R$
$\mathbb{E}(X \mid h(Y))=\mathbb{E}(X \mid Y)$ if $h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is one-one
Lemma: Tower Property
$\mathbb{E}\left[E\left(X \mid Y_{1}, Y_{2}\right) \mid Y_{1}\right]=\mathbb{E}\left(X \mid Y_{1}\right)$
Lemma:
If $\left\{B_{i}: 1 \leq i \leq n\right\}$ is a partition of A then $\mathbb{E}(X \mid A)=\sum_{i=1}^{n} \mathbb{E}\left(X \mid B_{i}\right) \mathbb{P}\left(B_{i}\right)$
Theorem: Martingale convergence
If $\left\{S_{n}\right\}$ is a Martingale with $\mathbb{E}\left(S_{n}^{2}<\right.$ $M<\infty)$ for some M and all n then $\exists S: S_{n} \xrightarrow{a . s, L^{2}} S$

6.4 Prediction and conditional expectation

Notation:
$\|U\|_{2}=\sqrt{\mathbb{E}\left(U^{2}\right)}=\sqrt{\langle U, U\rangle}$
$\langle U, V\rangle=\mathbb{E}(U V),\left\|U_{n}-U\right\|_{2} \rightarrow 0 \Leftrightarrow$
$U_{n} \xrightarrow{L^{2}} U$
$\|U+V\|_{2} \leq\|U\|_{2}+\|V\|_{2}$
Def.
X, Y r.v. $\mathbb{E}\left(Y^{2}\right)<\infty$. The minimum mean square predictor of Y given X is $\hat{Y}=h(X)=\min \|Y-\hat{Y}\|_{2}$
Theorem:
If a (linear) space H is closed and $\hat{Y} \in H$ then min $\|Y-\hat{Y}\|_{2}$ exists
Projection Theorem:
\bar{H} is a closed linear space and Y : $\mathbb{E}\left(Y^{2}\right)<\infty$
For $M \in H$ then $\mathbb{E}((Y-M) Z)=0 \Leftrightarrow$ $\|Y-M\|_{2} \leq\|Y-Z\|_{2} \forall Z \in H$
Theorem:
Let X and Y be r.v., $E\left(Y^{2}\right)<\infty$.

The best predictor of Y given X is $\mathbb{E}(X \mid Y)$

$7 \quad$ Stochastic processes

Definition: Renewal process

$\bar{N}=\{N(t): t \geq 0\}$ is a process for which $N(t)=\max \left\{n: T_{n} \leq t\right\}$ where $T_{0}=0, \quad T_{n}=X_{1}+X_{2}+\cdots+X_{n}$ for $n \geq 1$, and the X_{n} are iid non-negative r.v.'s

$8 \quad$ Stationary processes

Definition:

The Autocovariance function
$c(t, t+h)=\operatorname{Cov}(X(t), X(t+h))$
Definition: The process $X=\{X(t)$: $t \geq 0\}$ taking real values is called strongly stationary if the families $\left\{X\left(t_{1}\right), X\left(t_{2}\right), \ldots, X\left(t_{n}\right)\right\}$ and $\left\{X\left(t_{1}+\right.\right.$ $\left.h), X\left(t_{2}+h\right), \ldots, X\left(t_{n}+h\right)\right\}$ has the same joint distribution for all $t_{1}, t_{2}, \ldots, t_{n}$ and $h>0$
Definition: The process $X=\{X(t)$: $t \geq 0\}$ taking real values is called weakly stationary if, for all t_{1} and t_{2} and $h>0: \mathbb{E}\left(X\left(t_{1}\right)\right)=\mathbb{E}\left(X\left(t_{2}\right)\right)$ and $\operatorname{Cov}\left(X\left(t_{1}\right), X\left(t_{2}\right)\right)=\operatorname{Cov}\left(X\left(t_{1}+\right.\right.$ $h), X\left(t_{2}+h\right)$), thus if and only if it has constant means and its autocovariance function satisfies $c(t, t+h)=c(0, h)$
Definition:
The covariance of complex-valued C_{1} and C_{2} is
$\operatorname{Cov}\left(C_{1}, C_{2}\right)=\mathbb{E}\left(\left(C_{1}-\mathbb{E} C_{1}\right)\left(\overline{C_{2}-\mathbb{E} C_{2}}\right)\right.$ Theorem:
$\{X\}$ real, stationary with zero mean and autocovariance $c(m)$.
The best predictor from the class of linear functions of the subsequence $\{X\}_{r-s}^{r}$ is
$\widehat{X}_{r+k}=\sum_{i=0}^{s} a_{i} X_{r-i}$
where $\sum_{i=0}^{s} a_{i} c(|i-j|)=c(k+j)$ for $0 \leq j \leq s$

Definition:

Autocorrelation function of a weakly stationary process with autocovariance function $c(t)$ is
$\rho(t)=\frac{\operatorname{Cov}(X(0), X(t))}{\sqrt{\operatorname{Var}(X(0)) \operatorname{Var}(X(t))}}=\frac{c(t)}{c(0)}$
Theorem:
Spectral theorem: Weakly stationary process X with strictly pos. σ^{2} is the char. function of some distribution F whenever $\rho(t)$ is continuous at $t=0$
$\rho(t)=\int_{-\infty}^{\infty} e^{\lambda} d F(\lambda)$
F is called the spectral distribution function.
Ergodic theorem:
X is strongly stationary such that
$\mathbb{E}\left|X_{1}\right|<\infty$ there exists a r.v Y
with the same mean as X_{n} such that $\frac{1}{n} \sum_{j=1}^{n} X_{j} \rightarrow Y$ a.s and in mean Weakly stationary processes:
If $X=\left\{X_{n}: n \geq 1\right\}$ is a weakly stationary process, there exists a Y such that $\mathbb{E}(Y)=\mathbb{E}\left(X_{1}\right)$ and $\frac{1}{n} \sum_{j=1}^{n} X_{j} \xrightarrow{\text { m.s. }} Y$.

8.1 Gaussian processes

Definition:

A real valued c.t. process is called Gaussian if each finite dimensional vector $\left(X\left(t_{1}\right), X\left(t_{2}\right), \ldots, X\left(t_{n}\right)\right)$ has the multivariate normal distribution $\mathcal{N}(\mu(t), \mathbf{V}(t)), \quad t=\left(t_{1}, t_{2}, \ldots, t_{n}\right)$

Theorem:

The Gaussian process X is stationary iff. $\mathbb{E}(X(t))$ is constant for all t and $\mathbf{V}(t)=\mathbf{V}(t+h)$ for all t and $h>0$

9 Inequalities

Cauchy-Schwarz:
$(\mathbb{E}(X Y))^{2} \leq \mathbb{E}\left(X^{2}\right) \mathbb{E}\left(Y^{2}\right)$
with equality if and only if $a X+b Y=1$. Jensen's inequality:
Given a convex function $J(x)$ and a r.v.
X with mean $\mu: \mathbb{E}(J(X)) \geq J(\mu)$
Markov's inequality
$\overline{P(|X| \geq a) \leq \frac{\mathbb{E}|X|}{a}}$ for any $a>0$
$h:(R) \rightarrow[0, \infty]$ non-negative fcn, then $P(h(X) \geq a) \leq \frac{\mathbb{E}(h(X))}{a} \forall a>0$
General Markov's inequality:
$h:(R) \rightarrow[0, M]$ non-negative function bounded by some M. Then
$P(h(X) \geq a) \leq \frac{\mathbb{E}(h(X))-a}{M-a} \quad 0 \leq a<M$ Chebyshev's Inequality:
$\mathbb{P}(|X| \geq a) \leq \frac{\mathbb{E}\left(X^{2}\right)}{a^{2}}$ if $a \geq 0$
Theorem: Holder's inequality
If $p, q>1$ and $p^{-1}+q^{-1}=1$ then
$\mathbb{E}|X Y| \leq\left(\mathbb{E}\left|X^{p}\right|\right)^{\frac{1}{p}}\left(\mathbb{E}\left|Y^{p}\right|\right)^{\frac{1}{q}}$
Minkowski's inequality:
If $p \geq 1$ then
$\left[\mathbb{E}\left(|X+Y|^{p}\right)\right]^{\frac{1}{p}} \leq\left(\mathbb{E}\left|X^{p}\right|\right)^{\frac{1}{p}}+\left(\mathbb{E}\left|Y^{p}\right|\right)^{\frac{1}{q}}$
Minkowski 2:
$\mathbb{E}\left(|X+Y|^{p}\right) \leq C_{P}\left[\mathbb{E}\left|X^{p}\right|+\mathbb{E}\left|Y^{p}\right|\right]$
where $p>0$ and

Kolomogorov's inequality:
Let $\left\{X_{n}\right\}$ be iid with zero means and variances σ_{n}^{2}. Then for $\epsilon>0$
$\mathbb{P}\left(\max _{1 \leq i \leq n}\left|X_{1}+\cdots+X_{i}\right|>\epsilon\right) \leq \frac{\sigma_{1}^{2}+\cdots+\sigma_{n}^{2}}{\epsilon^{2}}$ Doob-Kolomogorov's inequality:
If $\left\{S_{n}\right\}$ is a martingale, then for any $\epsilon>0$
$\mathbb{P}\left(\max _{1 \leq i \leq n}\left|S_{i}\right|>\epsilon\right) \leq \frac{\mathbb{E}\left(S_{n}^{2}\right)}{\epsilon^{2}}$

