
1 Sets

(A ∪B) ∪ C = A ∪ (B ∪ C)
(A ∪B)C = AC ∩BC
Definition: σ-field
F subset of Ω is a σ − field, if
(a) 0 ∈ F
(b) if A1, A2, ... ∈ F then ∪∞i=1Ai ∈ F
(c) if A ∈ F then Ac ∈ F

2 Probability

P(AC) = 1− P(A)
If B ⊇ A then P(B) = P(A)+P(B\A) ≥
P(A)
P(A ∪B) = P(A) + P(B)− P(A ∩B)
More generally:
P (
⋃n
i=1Ai) =

∑
i P(Ai) −∑

i<j P (Ai ∩Aj)−
∑
i<j<k P (Ai ∩Aj ∩Ak)−

· · ·+ (−1)
n+1P (A1 ∩A2 ∩ · · · ∩An)

Lemma 5, p. 7: Let A1 ⊆ A2 ⊆ . . . ,
and write A for their limit:
A =

⋃∞
i=1Ai = limi→∞Ai then

P(A) = limi→∞ P(Ai)
Similarly, B1 ⊇ B2 ⊇ B3 ⊇ . . . , then
B =

⋂∞
i=1Bi = limi→∞Bi

satisfies P(B) = limi→∞ P(Bi)
Multiplication rule
P (A,B) = P (A)P (B | A)
Conditional Probability

P (A | B) = P (A∩B)
P (B)

P (A | B,C, ...) = P (A,B,C,...)
P (B,C,...)

Bayes formula
P(A|B) = P(B|A)P(A)P(B)
Total probability
P (A) = P (A | B)P (B)
+ P (A | BC)P (BC)
P (A) =

∑n
i=1 P (A | Bi)P (Bi)

Definition 1, p. 13:
A family {Ai : i ∈ I}is independent if:
P
(⋂

i∈J Ai
)

=
∏
i∈J P(Ai) For all finite

subset J of I

3 Random Variable

Lemma 11, p. 30:
Let F be a distribution function of X,
then
(a) P(X > x) = 1− F (x)
(b) P(x < X ≤ y) = F (y)− F (x)
(c) F (X = x) = F (x)− limy→x F (y)
Marginal distribution:
limy→∞ FX,Y (x, y) = FX(x)
limx→∞ FX,Y (x, y) = FY (y)
Lemma 5, p. 39:
The joint distribution function FX,Y of
the random vector (X,Y ) has the fol-
lowing properties:

lim
x,y→−∞

FX,Y (x, y) = 0

lim
x,y→∞

FX,Y (x, y) = 1

if (x1, y1) ≤ (x2, y2) then
FX,Y (x1, y1) ≤ FX,Y (x2, y2)
FX,Y is continuous from above, in that:
FX,Y (x + u, y + v) → FX,Y (x, y) as
u, v → 0
Theorem:
If X and Y are independent and g, h :
R → R, then g(X) and h(Y ) are inde-
pendent too.
Definition:
The expectation of the random variable
X is:
E(X) =

∑
x:f(x)>0 xf(x)

Lemma:
If X has mass function f and g : R→ R,
then:
E(g(X)) =

∑
x g(x)f(x)

Continous counterpart:
E (g(X)) =

∫∞
−∞ g(x)fX(x)dx

Definition:
If k is a positive integer, the k:th mo-
ment mk of X is defined mk = E(Xk).
The k:th central moment is σk =
E((X −m1)k)
Theorem:
The expectation operator E:
(a) If X ≥ 0 then E(X) ≥ 0
(b) If a, b ∈ R then E(aX + bY ) =
aE(X) + bE(Y )
Lemma:
If X and Y are independent, then
E(XY ) = E(X)E(Y )
Definition:
X and Y are uncorrelated if E(XY ) =
E(X)E(Y )
Theorem:
For random variables X and Y
(a) Var(aX) = a2Var(X) for a ∈ R
(b) Var(X + Y ) = Var(X) + Var(Y ) if
X and Y are uncorrelated.
Indicator function:
EIA = P(A)

distribution function
F : R− > [0, 1] : F (x) = P (X ≤ x)
mass function

3.1 Distribution functions

Constant variable
X(ω) = c: F (X) = σ(x− c)
Bernoulli distribution Bern(p)
A coin is tossed one time and shows
head with probability p with X(H) = 1
and X(T ) = 0
F (X) = 0 x < 0
F (X) = 1− p 0 ≤ x < 1
F (X) = 1 x ≥ 1
E(X) = p, Var(X) = p(1− p)
Binomial distribution bin(n, k)
A coin is tossed n times and a head
turns up each time with probability p.
The total number of heads is discribed

by:
f(k) =

(
n
k

)
pkqn−k

E(X) = np, Var(X) = np(1− p)
Poisson distribution

f(k) = λk

k! exp(−λ)
E(X) = Var(X) = λ
Geometric distribution
Independent Bernoulli trials are per-
formed. Let W be the waiting time
before the first succes occurs. Then
f(k) = P (W = k) = p(1− p)k−1
E(X) = 1/p, Var(X) = (1− p)/p2
negative binomial distribution
Let Wr be the waiting time before the
r:th success. Then
f(k) = P (Wr = k) =

(
k−1
r−1
)
pr(1− p)k−r

k = r, r + 1
E(X) = pr

1−p , Var = pr
(1−p)2

Exponential distribution:

F (x) = 1− e−λx, x ≥ 0
E(X) = 1/λ, Var(X) = 1/λ2

Normal distribution:

f(x) = 1√
2πσ2

e−
(x−µ)2

2σ2 , −∞ < x <∞
E(X) = µ, Var(X) = σ2

Cauchy distribution:

f(x) = 1
π(1+x2) (no moments!)

3.2 Dependence

Joint distribution:
F (x, y) = P(X ≤ x, Y ≤ y) =∫ y
−∞

∫ x
−∞ f(u, v)dvdu

Lemma:
The random variables X and Y are in-
dependent if and only if
fX,Y (x, y) = fX(x)fY (y) for all x, y ∈ R
FX,Y (x, y) = FX(x)FY (y) for all
x, y ∈ R
Marginal distribution:
FX(x) = P(X ≤ x) = F (x,∞) =∫ x
−∞

(∫ −∞
−∞ f(u, y

)
dydx

Marginal densities: fX(x) =

P
(⋃

y({X = x} ∩ {Y = y})
)

=∑
y P(X = x, Y = y) =

∑
y fX,Y (x, y)

fX(x) =
∫∞
−∞ f(x, y)dy

Lemma:
E(g(X,Y )) =

∑
x,y g(x, y)fX,Y (x, y)

Definition:
Cov(X,Y ) = E [(X − EX)(Y − EY )]

3.3 Conditional distribu-
tions

Definition:
The conditional distribution of Y given
X = x is:
FY |X(y|x) = P(Y ≤ y|X ≤ x)

=
∫ x
−∞

f(v,y)
fY (y) dv, {y : fY (y) > 0}

Theorem: Conditional expectation
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ψ(X) = E (Y | X) , E (ψ(X)) = E(Y )
E (ψ(X)g(X)) = E (Y g(X))

3.4 Sums of random vari-
ables

Theorem:
P(X + Y = z) =

∑
x f(x, z − x)

If X and Y are independent, then
P(X + Y = z) = fX+Y (z) =∑
x fX(x)fY (z − x) =

∑
y fX(z −

y)fY (y)

3.5 Multivariate normal dis-
tribution:

f(x) =
exp(− 1

2 (x−µ)
TV−1(x−µ))√

(2π)ndet(V)

X = (X1, X2, . . . , Xn)
T

µ = (µ1, . . . , µn), E(Xi) = µi
V = (vij), vij = Cov(Xi, Xj)

4 Generating functions

Definition: Generating function
The generating function of the random
variable X is defined by:
G(s) = E(sX)
Example: Generating functions
Constant: G(s) = sc

Bernoulli: G(s) = (1− p) + ps
Geometric: ps

1−s(1−p)
Poisson: G(s) = eλ(s−1)

Theorem: expectation ↔ G(s)

(a) E(s) = G′(1)
(b) E(X(X−1) . . . (X−k+1)) = G(k)(1)
Theorem: independance
X and Y are independent, iff
GX+Y (s) = GX(s)GY (s)

4.1 Characteristic functions

Definition: moment generating function

M(t) = E(etX)
Definition: characteristic function
Φ(t) = E(eitX)
Theorem: independance
X and Y are independent iff
ΦX+Y (t) = ΦX(t)ΦY (t)
Theorem: Y = aX + b
ΦY (t) = eitbΦX(at)
Definition: joint characteristic function

ΦX,Y (s, t) = E(eisXeitY )
Independent if:
ΦX,Y (s, t) = ΦX(s)ΦY (t) for all s and t
Theorem: moment gf ↔ charact. fcn
Examples of characteristic functions:

Ber(p): Φ(t) = q + peit

Bin distribution, bin(n, p): ΦX(tt) =
(q + peit)

n

Exponential distr. Φ(t) =∫∞
0
eitxλe−λxdx

Cauchy distr: Φ(t) = 1
π

∫∞
−∞

eitx

(1+x2)dx

Normal distr, N (0, 1) : Φ(t) =
E(eitX) =

∫∞
−∞

1√
2π

exp(itx− 1
2x

2)dx

Corollary:
Random variables X and Y have the
same characteristic function if and only
if they have the same distribution func-
tion. Theorem: Law of large Numbers
Let X1, X2, X3 . . . be a sequence of iid
r.v’s with finite mean µ.
Their partial sums Sn = X1+X2+ · · ·+
Xn satisfy 1

nSn
D→µ as n→∞

Central Limit Theorem:
Let X1, X2, X3 . . . be a sequence of iid
r.v’s with finite mean µ and finite non-
zero σ2, and let Sn = X1+X2+ · · ·+Xn

then
(Sn−nµ)√

nσ2

D→N (0, 1) as n→∞

5 Markov chains

Definiton Markov Chain
P (Xn = s | X0 = x0, ...Xn−1 = xn1) =
P (Xn | Xn − 1 = xn − 1)
Definition homogenous chain
P (Xn + 1 = j | Xn = i) = P (X1 = j |
X0 = i)
Definition transition matrix
P = (pij) with
pij = P (Xn+1 = j | Xn = i)
Theorem: P stochastic matrix
(a) P has non-negative entries
(b) P has row sum equal 1
n-step transition
pij(m,m+n) = P (Xm+n = j | Xm = i)
Theorem Chapman Kolmogorov
pij(m.m+ n+ r) =∑
k pik(m,m+ n)pkj(m+ n,m+ n+ r)

so
P(m,m+ n) = Pn

Definiton: mass funtion

µ
(n)
i = P (Xn = i)
µ(m+n) = µ(m)Pn ⇒ µ(n) = µ(0)Pn

Definition: persistent, transient
persistent:
P (Xn = i for some n ≥ 1 | X0 = i) = 1
transient:
P (Xn = i for some n ≥ 1 | X0 = i) < 1
Definition: first passage time
fij(n) = P (X1 6= j, .,Xn−1 6= j,Xn =
j | X0 = i)
fij :=

∑∞
n=1 fij(n)

Corollary: persistent, transient
State j is persistent if

∑
n pjj(n) =∞

and ⇒
∑
n pij(n) =∞ for all i

State j is transient if
∑
n pjj(n) <∞

and ⇒
∑
n pij(n) <∞ for all i

Theorem: Generating functions
Pij(s) =

∑∞
n=0 s

npij(n)

Fij(s) =
∑∞
n=0 s

nfij(n)
then
(a) Pii(s) = 1 + Fii(s)Pii(s)
(b) Pij(s) = Fij(s)Pij(s) if i 6= j
Definition: First visit time Tj
Tj := min{n ≥ 1 : Xn = j}
Definition: mean recurrence time µi
µi := E(Ti | X0 = i) =

∑
n nfii(n)

Definition: null, non-null state
state i is null if µi =∞
state i is non-null if µi <∞
Theorem: nullness of a persistent state
A persistent state is null if and only if
pii(n)→ 0(n→∞)
Definition: period d(i)
The period d(i) of a state i is defined
by d(i) = gcd{n : pii(n) > 0}. We call
i periodic if d(i) > 1 and aperiodic if
d(i) = 1
Definition: Ergodic
A state is called ergodic if it is persis-
tent, non-null, and aperiodic.
Definition: (Inter-)communication
i→ j if pij(m) < 0 for some m
i↔ j if i→ j and j → i
Theorem: intercommunication
If i↔ j then:
(a) i and j have the same period
(b) i is transient iff j is transient
(c) i is null peristent iff j is null peris-
tent
Definition: closed, irreducible
a set C of states is called:
(a) closed if pij = 0 for all i ∈ C, j /∈ C
(b) irreducible if i↔ j for all i, j ∈ C
an absorbing state is a closed set with
one state
Theorem: Decomposition
State space S can be partitioned as
T = T ∪ C1 ∪ C2 ∪ . . . , T is the set of
transient states, Ci irreducible, closed
sets of persistent states
Lemma: finite S
If S is finite, then at least one state is
persisten and all persistent states are
non-null.

5.1 Stationary distributions

Definition: stationary distribution
π is called stationary distribution if
(a) πj ≥ 0 for all j,

∑
j πj = 1

(b) π = πP , so πj =
∑
i πipij for all j

Theorem: existence of stat. distribution
An irreducible chain has a stationary
distribution π iff all states are non-null
persistent.
Then π is unique and given by πi = µ−1i
Lemma: ρi(k)
ρi(k): mean number of visits of the
chain to the state i between two succes-
sive visits to state k.
Lemma: For any state k of an irre-
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ducible persistent chain, the vector
ρ(k) satisfies ρi(k) < ∞ for all i and
ρ(k) = ρ(k)P
Theorem: irreducible, persistent
If the chain is irreducible and persis-
tent, there exists a positive x with
x = xP , which is unique to a multiplica-
tive constant. The chain is non-null if∑
i xi <∞ and null if

∑
i xi =∞

Theorem: transient chain if
s any state of an irreducible chain. The
chain is transient iff there exists a non-
zero solution {yj : j 6= s}, with |yj | ≤ 1
for all j, to the equation:
yi =

∑
j,j 6=s pijyj , i 6= s

Theorem: persistent if
s any state of an irreducible chain on
S = {0, 1, 2, ...}. The chain is persistent
if there exists a solution {yj : j 6= s} to
the inequalities
yi ≥

∑
j,j 6=s pijyj , i 6= s

Theorem: Limittheorem
For an irreducible aperiodic chain, we
have that
pij(n)→ 1

µj
as n→∞ for all i and j

5.2 Reversibility

Theorem: Inverse Chain
Y with Yn = XN−n is a Markov chain
with P (Yn+1 = j | Yn = i) = (

πj
πi

)pji
Definition: Reversible chain
A chain is called reversible if
πipij = πjpji
Theorem: reversible → stationary
If there is a π with πipij = πjpji then
π is the stationary distribution of the
chain.

5.3 Poisson process

Definition: Poisson process
N(t) gives the number of events in time
t
Poisson process N(t) in S = {0, 1, 2, ...},
if
(a) N(0) = 0; if s < t then N(s) ≤ N(t)
(b) P (N(t+ h) = n+m | N(t) = n) =
λh+ o(h) if m = 1
o(h) if m > 1
1− λh+ o(h) if m = 0
(c) the emission per interval are inde-
pendent of the intervals before.
Theorem: Poisson distribution
N(t) has the Poisson distribution:

P (N(t) = j) = (λt)j

j! e−λt

Definition: arrivaltime, interarrivaltime
Arrival time: Tn = inf{t : N(t) = n}
Interarrivaltime: Xn = Tn − Tn−1
Theorem: Interarrivaltime
X1, X2, ... are independent having expo-
nential distribution Definition:
Birth process → Poisson process with
intensities λ0, λ1, . . .

Eq. Forward System of Equations:
p′ij(t) = λj−1pi,j−1(t)− λjpij(t)
j ≥ i, λ−1 = 0, pij(0) = δij
Eq. Backward systems of equations:
p′ij(t) = λipi+1,j(t)− λpij(t)
j ≥ i pij(0) = δij
Theorem:
The forward system has a unique solu-
tion which satisfies the backward equa-
tion.

5.4 Continuous Markov
chain

Definition: Continuous Markov chain
X is continuous Markov chain if:
P (X(tn) = j | X(t1))i1, ..., X(tn−1) =
in−1) = P (X(tn) = j | X(tn−1)
Definition: transistion probability
pij(s, t) = P (X(t) = j | X(s) = i) for
s ≤ t
homogeneous if pij(s, t) = pij(0, t− s)
Def: Generator Matrix
G = (gij), pij(h) = gijh if i 6= j and
pii = 1 + gijh
Eq. Forward systems of equations:
P ′t = PtG
Eq. Backward systems of equations:
P ′t = GP t
Often solutions on the form Pt =
exp(tG)
Matrix Exponential:

exp(tG) =
∑∞
n=1

tn

n!G
n

Definition:
Irreducible if for any pair i, j, pij(t) > 0
for some t
Definition: Stationary
π, πj ≥ 0,

∑
j πj = 1 and

π = πPt ∀t ≥ 0
Claim: π = πPt ⇔ πG = 0
Theorem:
Stationary if pij(t)→ πj as t→∞ ∀i, j
Not stationary if pij → 0

6 Convergence of Ran-
dom Variables

Norm
(a)‖f‖ ≥ 0
(b) ‖f‖ = 0 iff f = 0
(c) ‖af‖ = |a| · ‖f‖
(d) ‖f + g‖ ≤ ‖f‖+ ‖g‖
convergent almost surely

Xn
a.s.−−→ X,

if {ω ∈ Ω : Xn(ω)→ X(ω) as n→∞}
convergent in rth mean

Xn
r−→ X

if E|Xr
n| <∞ and E(|Xn −X|r)→ 0 as

n→∞
convergent in probability

Xn
P−→ X

if P (|Xn −X| > ε)→ 0 as n→∞

convergent in distribution

Xn
d−→ X

if P (Xn < x)→ P (X < x) as n→∞
Theorem: implications

(Xn
a.s./r−−−−→ X) ⇒ (Xn

P−→ X) ⇒
(Xn

D−→ X)
For r > s ≥ 1 :
(Xn

r−→ X)⇒ (Xn
s−→ X)

Theorem: additional implications

(a) If Xn
D−→ c, where c is const, then

Xn
P−→ c

(b) If Xn
P−→ X and P (|Xn| ≤ k) = 1

for all n and some k, then Xn
r−→ X for

all r ≥ 1
(c) If Pn(ε) = P (|Xn − X|) > ε) satis-
fies

∑
n Pn(ε) < ∞ for all ε > 0, then

Xn
a.s.−−→ X

Theorem: Skorokhod’s representation t.

If Xn
D−→ X as n→∞

then there exists a probability space and
random variable Yn, Y with:
(a) Yn and Y have distribution Fn, F

(b) Yn
a.s.−−→ Y as n→∞

Theorem: Convergence over function

If Xn
D−→ X and g : R → R is continu-

ous then g(Xn)
D−→ g(X)

Theorem: Equivalence
The following statements are equivalent:

(a) Xn
D−→ X

(b) E(g(Xn)) → E(g(X)) for all
bounded continuous functions g
(c) E(g(Xn)) → E(g(X)) for all func-
tions g of the form g(x) = f(x)I[a,b](x)
where f is continuous.
Theorem: Borel-Cantelli
Let A = ∩n ∪∞m=n Am be the event that
infinitely many of the An occur. Then:
(a) P (A) = 0 if

∑
n P (An) <∞

(b) P (A) = 1 if
∑
n P (An) = ∞ and

A1, A2, ... are independent.
Theorem:
Xn → X and Yn → Y implies
Xn + Yn → X + Y for convergence
a.s., r:th mean and probability. Not
generally true in distribution.

6.1 Laws of large numbers

Theorem:
X1, X2, . . . is iid and E(X2

i ) < ∞ and
E(X) = µ then
1
n

∑n
i=1Xi → µ a.s. and in mean square

Theorem:
{Xn} iid. Distribution function F .

Then 1
n

∑n
i=1Xi

P→µ iff one of the fol-
lowing holds:
1) nP (|X1| > n) → 0 and

∫
[−n,n] xdF

as n→∞
2) Char. Fcn. Φ(t) of Xi is differen-
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tiable at t = 0 and Φ′(0) = iµ
Theorem: Strong law of large numbers
X1, X2, ... iid. Then
1
n

∑n
i=1Xi → µ a.s. as n→∞.

for some µ, iff E|X1| < ∞. In this case
µ = EX1

6.2 Law of iterated loga-
rithm

If X1, X2, ... are iid with mean 0 and
variance 1 then
P(lim supn→∞

Sn√
2nloglogn

= 1) = 1

6.3 Martingales

Definition: Martingale
Sn : n ≥ 1 is called a martingale with
respect to the sequence Xn : n ≥ 1, if
(a) E|Sn| <∞
(b) E(Sn+1 | X1, X2, ..., Xn) = Sn
Lemma:
E(X1 +X2|Y ) = E(X1|Y ) + E(X2|Y )
E (Xg(Y )|Y ) = g(Y )E(X|Y ), g :
Rn → R
E (X|h(Y )) = E(X|Y ) if h : Rn → Rn
is one-one
Lemma: Tower Property
E [E(X|Y1, Y2)|Y1] = E(X|Y1)
Lemma:
If {Bi : 1 ≤ i ≤ n} is a partition of A
then E(X|A) =

∑n
i=1 E(X|Bi)P(Bi)

Theorem: Martingale convergence

If {Sn} is a Martingale with E(S2
n <

M <∞) for some M and all n then

∃S : Sn
a.s,L2

−→ S

6.4 Prediction and condi-
tional expectation

Notation:
‖U‖2 =

√
E(U2) =

√
〈U,U〉

〈U, V 〉 = E(UV ), ‖Un − U‖2 → 0 ⇔
Un

L2

−→U
‖U + V ‖2 ≤ ‖U‖2 + ‖V ‖2
Def.
X,Y r.v. E(Y 2) < ∞. The minimum
mean square predictor of Y given X is
Ŷ = h(X) = min ‖Y − Ŷ ‖2
Theorem:
If a (linear) space H is closed and Ŷ ∈ H
then min

∥∥∥Y − Ŷ ∥∥∥
2

exists

Projection Theorem:
H is a closed linear space and Y :
E(Y 2) <∞
For M ∈ H then E((Y −M)Z) = 0 ⇔
‖Y −M‖2 ≤ ‖Y − Z‖2 ∀Z ∈ H
Theorem:
Let X and Y be r.v., E(Y 2) <∞.

The best predictor of Y given X is
E(X|Y )

7 Stochastic processes

Definition: Renewal process
N = {N(t) : t ≥ 0} is a process for
which N(t) = max{n : Tn ≤ t} where
T0 = 0, Tn = X1 + X2 + · · · + Xn for
n ≥ 1, and the Xn are iid non-negative
r.v.’s

8 Stationary processes

Definition:
The Autocovariance function
c(t, t+ h) = Cov(X(t), X(t+ h))
Definition: The process X = {X(t) :
t ≥ 0} taking real values is called
s
¯
trongly stationary if the families
{X(t1), X(t2), ..., X(tn)} and {X(t1 +
h), X(t2+h), ..., X(tn+h)} has the same
joint distribution for all t1, t2, ..., tn and
h > 0
Definition: The process X = {X(t) :
t ≥ 0} taking real values is called
w
¯

eakly stationary if, for all t1 and
t2 and h > 0 :E(X(t1)) = E(X(t2))
and Cov(X(t1), X(t2)) = Cov(X(t1 +
h), X(t2 + h)), thus if and only if it has
constant means and its autocovariance
function satisfies c(t, t+ h) = c(0, h)
Definition:
The covariance of complex-valued
C1and C2 is
Cov(C1, C2) = E

(
(C1 − EC1)(C2 − EC2)

)
Theorem:
{X} real, stationary with zero mean
and autocovariance c(m).
The best predictor from the class of lin-
ear functions of the subsequence {X}rr−s
is
X̂r+k =

∑s
i=0 aiXr−i

where
∑s
i=0 aic (|i− j|) = c(k + j) for

0 ≤ j ≤ s
Definition:
Autocorrelation function of a weakly
stationary process with autocovariance
function c(t) is

ρ(t) = Cov(X(0),X(t))√
Var(X(0))Var(X(t))

= c(t)
c(0)

Theorem:
Spectral theorem: Weakly stationary
process X with strictly pos. σ2 is the
char. function of some distribution F
whenever ρ(t) is continuous at t = 0
ρ(t) =

∫∞
−∞ eλdF (λ)

F is called the spectral distribution
function.
Ergodic theorem:
X is strongly stationary such that
E|X1| < ∞ there exists a r.v Y

with the same mean as Xn such that
1
n

∑n
j=1Xj → Y a.s and in mean

Weakly stationary processes:
If X = {Xn : n ≥ 1} is a weakly station-
ary process, there exists a Y such that
E(Y ) = E(X1) and 1

n

∑n
j=1Xj

m.s.−→Y .

8.1 Gaussian processes

Definition:
A real valued c.t. process is called
Gaussian if each finite dimensional
vector (X(t1), X(t2), . . . , X(tn)) has
the multivariate normal distribution
N (µ(t),V(t)) , t = (t1, t2, . . . , tn)
Theorem:
The Gaussian process X is stationary
iff. E (X(t)) is constant for all t and
V(t) = V(t+ h) for all t and h > 0

9 Inequalities

Cauchy-Schwarz:

(E(XY ))
2 ≤ E(X2)E(Y 2)

with equality if and only if aX+bY = 1.
Jensen’s inequality:
Given a convex function J(x) and a r.v.
X with mean µ: E(J(X)) ≥ J(µ)
Markov’s inequality

P (|X| ≥ a) ≤ E|X|
a for any a > 0

h : (R)→ [0,∞] non-negative fcn, then

P (h(X) ≥ a) ≤ E(h(X))
a ∀a > 0

General Markov’s inequality:
h : (R) → [0,M ] non-negative function
bounded by some M . Then

P (h(X) ≥ a) ≤ E(h(X))−a
M−a 0 ≤ a < M

Chebyshev’s Inequality:

P (|X| ≥ a) ≤ E(X2)
a2 if a ≥ 0

Theorem: Holder’s inequality

If p, q > 1 and p−1 + q−1 = 1 then

E|XY | ≤ (E|Xp|)
1
p (E|Y p|)

1
q

Minkowski’s inequality:
If p ≥ 1 then

[E(|X + Y |p)]
1
p ≤ (E|Xp|)

1
p + (E|Y p|)

1
q

Minkowski 2:
E(|X + Y |p) ≤ CP [E|Xp|+ E|Y p|]
where p > 0 and

CP →
{

1 0 < p ≤ 1

2p−1 p > 0

Kolomogorov’s inequality:
Let {Xn} be iid with zero means and
variances σ2

n. Then for ε > 0

P( max
1≤i≤n

|X1 + · · ·+Xi| > ε) ≤ σ2
1+···+σ

2
n

ε2

Doob-Kolomogorov’s inequality:
If {Sn} is a martingale, then for any
ε > 0
P( max

1≤i≤n
|Si| > ε) ≤ E(S2

n)
ε2
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