

MVE251 - Probability and random processes, advanced level

Tomas McKelvey Signal Processing Group Signals and Systems

Why Stochastic Processes?

General Motivation

- Modeling measured signals (and many other phenomena) as random entities is successful!
- Important to understand the underlying mechanism and formalism – we are not dealing with the true nature of signals!
- Many pitfalls, mistakes are common!
- Ph.D. students in the "EE area" need at least one mathematically oriented course!

Application areas

- Understand how signals and systems behave:
 - Measured data and relations between signals
 - Continuous and discrete phenomena
 - Stationary and non-stationary
- Derive and understand methods for estimation, detection and classification
 - Parametric modeling from data
 - Non-parametric descriptions; Fourier, Wavelets etc.
 - Digital Communication receivers
 - Fault detection and event classification
 - Etc...

Examples

- ARMA-Modeling: A(z)y(n) = B(z)e(n)
 - Coefficients a_k, b_k estimated using sample based autocovariance function estimates
 - What are the statistical properties of the estimates?
 - How reliable is the spectrum estimate?
- Detection: received signal x(t) is a distorted (channel and noise) version of an encoded bit stream
 - What is the best way to determine the bits?
 - What is the probability of error?
 - What if channel unknown, non-stationary etc.?

- Bayesian estimation/detection: high- dimensional integrals over complicated PDFs
- Monte-Carlo methods (applications in simulation and detection/estimation)
- Particle filters for tracking applications
- Importance/Rejection sampling
- Markov-Chain Monte Carlo (MCMC) methods: Metropolis-Hastings alg., Gibbs sampling etc.
- Cross-validation, jack-knifing, bootstrap etc.

Increasing importance due to faster computers!

What do engineers need to know?

- The basics: What is probability? Foundations?
- Gut feeling for properties of random signals (correlation, spectrum etc.)
- Calculation of probabilities, e.g. performance of a communication receiver for a random channel
- Understand concepts for example: how to treat large random samples (convergence)?
- Master statistical tools necessary to understand properties of your algorithms!
- Know when you cheat (or when it is time to ask the experts)