Tentamentsskrivning i MVE 251, 7.5 hp.

Tid:

Examinator och jour: Serik Sagitov, tel. 772-5351, mob. 0736 907 613, rum H3026 i MV-huset. Hjälpmedel: Chalmersgodkänd räknare, utdelad formelsamling.

A typical exam consists of 6 questions each worth of 5 points. Below come a number of examples of exam questions.

- 1. (5 points) Suppose that $\{X_n\}_{n=0}^N$ is an irreducible non-null persistent Markov chain, with transition matrix $\mathbf{P} = (p_{ij})$ and stationary distribution $\pi = (\pi_1, \pi_2, \ldots)$. Defined another chain $\{Y_n\}_{n=0}^N$ by $Y_n = X_{N-n}$.
 - (a) Check that $\{Y_n\}_{n=0}^N$ is also a Markov chain and find its transition probabilities.
 - (b) Under which additional condition the two chains $\{X_n\}_{n=0}^N$ and $\{Y_n\}_{n=0}^N$ have the same transition probabilities?
- 2. (5 points) Consider three independent Bernoulli variables $X_i \sim Be(p_i), i = 1, 2, 3$.
 - (a) Find the joint distribution of $Y_1 = X_1 + X_2$ and $Y_2 = X_2 + X_3$.
 - (b) Compute the covariance between Y_1 and Y_2 .
 - (c) When Y_1 and Y_2 are independent?
- 3. (5 points) Given a sequence of random events A_1, A_2, \ldots define a new event

$$A = \bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_m.$$

- (a) What is the meaning of the event A? Explain in detail.
- (b) Show that if $\sum_{n=1}^{\infty} P(A_n) < \infty$, then P(A) = 0.
- 4. (5 points) Given a sequence of random events A_1, A_2, \ldots define a new event

$$A = \bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_m.$$

- (a) Suppose $\mathcal{F}_1, \mathcal{F}_2, \ldots$ is such a sequence of sigma-fields that $A_n \in \mathcal{F}_n$ for all n. Show that A belongs to the corresponding tail sigma-field.
- (b) It is known that if $\sum_{n=1}^{\infty} P(A_n) < \infty$, then P(A) = 0. Can we combine this fact with the previous to conclude using a zero-one law that if $\sum_{n=1}^{\infty} P(A_n) = \infty$, then P(A) = 1?
- 5. (5 points) Let S_n be a symmetric random walk with jumps ± 1 and starting from $S_0 = 0$. Define the maximum process by $M_n = \max\{S_0, S_1, \ldots, S_n\}$.
 - (a) Draw an example of a trajectory $\{S_0, S_1, \ldots, S_n\}$ and the corresponding trajectory $\{M_0, M_1, \ldots, M_n\}$. Compare on this trajectory the values of S_n and M_n .
 - (b) Show that

$$P(S_{10000} > 196) \approx 0.025,$$

and

$$P(M_{10000} > 500) < 0.02$$

6. (5 points) Let $\{X_n\}_{n=1}^{\infty}$ represent the sequence of outcomes of independent tosses of a fair coin, so that $X_n = -1$ if *n*-th toss results in tails and $X_n = 1$ otherwise.

- (a) Draw a sequence of Venn diagrams to illustrate the idea of a natural filtration $\{\mathcal{F}_n\}_{n=1}^{\infty}$ with \mathcal{F}_n being the sigma-field generated by $\{X_1, \ldots, X_n\}$.
- (b) Compute the conditional variance $Var(X_1 + X_2 + X_3 | X_1 + X_2)$.
- 7. (5 points) Let $\{X_n\}_{n=1}^{\infty}$ be a sequence of stochastic variables defined by

$$X_n = I_1 \sin(\phi n) + I_2 \cos(\phi n),$$

where I_1, I_2, ϕ are independent random variables such that $P(I_1 = 1) = P(I_1 = -1) = P(I_2 = 1) = P(I_2 = -1) = \frac{1}{2}$ and ϕ is uniformly distributed over $[-\pi, \pi]$.

- (a) On the same graph draw three examples of trajectories of the process $\{X_n\}$. What is random in these trajectories?
- (b) Verify that $\{X_n\}$ is a stationary process.
- (c) Find the spectral density function of $\{X_n\}$.
- 8. (5 points) An urn contains n balls numbered 1, 2, ..., n. All balls are drawn one by one at random without replacement. Denote their numbers $X_1, ..., X_n$.
 - (a) Compute the conditional expectation $E(X_2|X_1)$.
 - (b) Find the joint distribution of (X_1, \ldots, X_n) and the marginal distributions.
- 9. (5 points) Weak convergence of random variables $X_n \xrightarrow{d} X$, if

 $\mathbb{P}(X_n \leq x) \to \mathbb{P}(X \leq x)$ for all x such that $\mathbb{P}(X = x) = 0$.

- (a) This definition does not require that the random variables are defined on the same probability space. Explain why.
- (b) Give an example of $X_n \xrightarrow{d} X$ with $\lim_n \mathbb{P}(X_n \leq x) \neq \mathbb{P}(X \leq x)$ for some x.
- (c) What is the difference between the strong law of large numbers and the weak law of large numbers?
- 10. (5 points) Let random variables $\{X_n\}$ be iid indicators with $\mathbb{P}(X_n = 1) = \mathbb{P}(X_n = 0) = 1/2$.
 - (a) Show that $S_n = X_1 \cdots X_n$ is a martingale.
 - (b) Show that $X_n \to 0$ in probability but not in mean.
 - (c) Does S_n converge a.s.?
- 11. (5 points) The law of the iterated logarithm. Let X_1, X_2, \ldots be iid random variables with mean 0 and variance 1. Then

$$\mathbb{P}\left(\limsup_{n \to \infty} \frac{X_1 + \ldots + X_n}{\sqrt{2n \log \log n}} = 1\right) = 1.$$
 (1)

- (a) Explain the meaning of this statement in terms of typical trajectories of a simple random walk.
- (b) Derive from (1) the next result

$$\mathbb{P}\left(\liminf_{n \to \infty} \frac{X_1 + \ldots + X_n}{\sqrt{2n \log \log n}} = -1\right) = 1.$$

- 12. (5 points) The weak law of large numbers.
 - (a) State the law of large numbers for iid random variables with a finite variance.

- (b) Prove the statement. (Hint: either use the Chebyshev inequality or prove first a convergence in mean square.)
- 13. (5 points) For a fixed integer $n \ge 1$ define a continuous time stochastic process by

$$X_t = \sum_{j=1}^n (A_j \cos(jt) + B_j \sin(jt)),$$

where $A_1, B_1, \ldots, A_n, B_n$ are uncorrelated r.v. with zero means and unit variances.

- (a) Show that the process X_t is weakly stationary and compute its mean, autocovariance, and autocorrelation functions.
- (b) Find the spectral representation for the process X_t .
- (c) Under the extra assumption that each of $A_1, B_1, \ldots, A_n, B_n$ has a standard normal distribution, prove that X_t is a strongly stationary process.
- 14. (5 points) A random vector $\mathbf{X} = (X_1, \dots, X_n)$ with a multivariate normal distribution with mean vector $\boldsymbol{\mu}$ and covariance matrix \mathbf{V} has the joint characteristic function of the form $\phi(\mathbf{t}) = e^{i\mathbf{t}\boldsymbol{\mu}^t \frac{1}{2}\mathbf{t}\mathbf{V}\mathbf{t}^t}$. Using this fact
 - (a) demonstrate that any linear combination $Y = a_1 X_1 + \ldots + a_n X_n$ is normally distributed,
 - (b) what are the mean and the variance of Y?
- 15. (5 points) There is a theorem saying that given $X_n \xrightarrow{P} X$, convergence $X_n \xrightarrow{L^1} X$ is equivalent to the uniform integrability of the sequence $\{X_n\}$. The uniform integrability means by definition that

$$\sup_{n} \mathbb{E}(|X_n|I_{\{|X_n|>a\}}) \to 0, \quad a \to \infty.$$

- (a) Give an example of a sequence of r.v. that converge in probability but not in mean.
- (b) Verify that the sequence in your example is not uniformly integrable.

Partial answers and solutions are also welcome. Good luck!