
EXAMPLE OF WRITTEN EXAMINATION

Solutions:

1 Gumbel distribution is given by the following cumulative distribution function

F (x) = e−e−(x−b)/a

, a > 0.

(a) By the definition of x100, it is the solution in x of

F (x) = 99/100,

where a = a∗ and b = b∗. By a straightforward algebra

−e−(x−b∗)/a∗ = ln 99/100

−(x− b∗)/a∗ ≈ ln 0.01

(x− b∗)/a∗ ≈ 4.61

x ≈ 4.61 ∗ a∗ + b∗

x ≈ 4.78

Thus an estimated and approximated value the hundred year sea-level

at Point Pirie is x100 is x∗100 = 4.78[m]. Alternatively, one can further

approximate the ML estimator (see Section 10.3) by using

x∗100 = b∗ + a∗ ln 100 = 3.87 + 0.198 ∗ 4.6051 = 4.78181.

We observe that the both approximations yield the same value.

(b) For finding the confidence interval for x100, we use the normal approxi-

mation to the estimation error distribution as given Section 10.3.1 of the

Namely, the confidence interval is given by

x∗100 ± λ0.005 · a∗
√

(1.11 + 0.61 ∗ ln2 100 + 0.52 ∗ ln 100)/65

≈ 4.78± λ0.005 · 0.1

or in other words [4.5, 5.0][m].

2 Given λ, the number of failures X per year is following Poisson distribution

with parameter λ, which has the mean E[X] = λ.
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(a) The average cost is E[c ·X] = c · E[X] = c · λ = 2000 SEK/year. We may

also approach the problem through Bayesian methodology and assume the

conjugate exponential prior for λ with the mean 0.5 which corresponds

to Gamma(α, β) with α = 1 and β = 2 so that E[Λ] = 1/β = 0.5. This

approach leads to the same answer E[c ·X] = E[E[c ·X|Λ]] = c ·E[Λ] = 2000

SEK/year.

(b) Our prior distribution for the problem as described above is Gamma(α, β)

with α = 1 and β = 2. because it is conjugate to the Poisson distri-

bution, the posterior distribution of Λ is given by Gamma(α + x, β +

t) =Gamma(2, 2.5) hence using the mean value of Gamma distribution

gives E[cΛ] = 4000 2
2.5

= 16000/5 = 3200 SEK.

3 The standarized death-rates is another name for the failure intensity function.

Let T denotes a life-time of a women. We are asked to compute the risk

P(T < 90|T > 80) = 1− P(T > 90)/P(Y > 80)

= 1−R(90)/R(80) = 1− exp(−
∫ 90

80

λ(t) dt).

Given the estimated parameters, we compute the integral∫ 90

80

α∗ + β∗e(t−3)/c∗ dt = 10 ∗ α∗ + β∗c∗e(87−77)/c∗

= 9 · 10−3 + 4.4 · 10.34 · 10−5
(
e87/10.34 − e77/10.34

)
= 1.280636.

Thus the estimated risk is approximately 1− e−1.28 ≈ 72%.

4 For the problem, we use Barlow-Proschan test that is specifically designed for

testing Poisson model (using χ2-test is also possible but not recommended for

this problem). The test statistics (see Section 7.4 of the textbook) for the

problem is

z =
n−1∑
k=1

k∑
i=1

ti/
n∑

k=1

tk =
n−1∑
k=1

sk/sn,

where ti are times between failures and sk are failures time. Straightforward

algebra gives sk’s as

50 94 196 268 290 329 332 347 544 732 811 899

945 950 955 991 1013 1152 1362 1459 1489 1512 1525 1539

Thus z = 18245/1539 = 11.8551. According to the test we would reject the

model at the significance level α = 0.05 if the value of z falls outside the interval

[23/2− 1.96
√

23/12, 23/2 + 1.96
√

23/12] ≈ [8.79, 14.21],

which is not the case, so we do not have evidence that using the Poisson model

for these data is not appropriate.
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The estimate of the intensity is then given as the reciprocal of the average of

times between failures, i.e. λ∗ = 24/1539 ≈ 0.0156 per hour.

5 The problem combines two random factors: occurences of fires in the industrial

buildings and losses due to these fires. In Part-a) we consider only the first

factor, in Part b) we account only for the second factor, and finaly in Part c),

we account for both.

(a) We assume that the we compute annual rate of fires and the obvious es-

timator (which is also the maximum likelihood estimator) of it is given

as

λ∗ = 57/(10 ∗ 285) = 0.02.

(b) We use normal approximation to the distributon of the estimation error E
that is discussed in Subsection 4.4.2 of the textbook. The

[5.7− 1.96 ∗
√

5.7/10, 5.7 + 1.96 ∗
√

5.7/10] = [4.22, 7.17].

(c) Here we use the definition of lognormal random variable which states that

Yi = logXi is normally distributed, so

P(Xi > 107) = P(Yi > 7 log 10)

≈ P(Yi > 16.12) = P((Yi −mX)/σX > (16.12−mX)/σX)

≈ P(Z > 0.847) = 0.2,

where in the last approximation we have used estimated values of mX and

σX , while Z is the standard normal variable.

(d) The risk is

1− exp(−tλ · P(X > 107)) ≈ tλ · P(X > 107) = 0.02 ∗ 0.2 ∗ 10 = 0.04,

i.e. 4%.
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6 The failure function is h(H,S) = 27 − S − H where S is the subsidence for a

given year.

(a) The failure function is h(H,S) = 27− S −H, S = 8.5 hence P (h(H,S) <

0) = P (H > 18.5) = 1− e−−(18.5−5.2)/1.95 ≈ 1/1000.

(b) Cornells safety index I = E[h(H,S)]/
√

V(h(H,S)) and here I = (18.5 −
E[H])/

√
V(h(H,S)) = 4.87.

(c) Let x be the height one need to lift the deck. The failure function is now

h(H,S) = x + 27− 13.3− 0.5
√
X −H. We use Gauss’ approximation to

compute the mean and variance of h(H,S) and we obtain

E[h(H,S)] ≈ x+ 13.7− 5.2− 1.95 ∗ 0.5773− 0.5
√

1.5 = x+ 6.76,

while the variance

V(h(H,S) = V(H) + V(S)

≈ 1.952 ∗ π2/6 + 0.52 ∗ (1/(4 ∗ 1.5)) ∗ 0.5 = 6.2757.

The safety index I ≈ (x + 6.76)/
√

6.276 should be equal to 4.87. Giving

x = −6.76 + 2.5 ∗ 4.87 = 5.42 meters.


