
Chalmers-University of Gothenburg Department of Mathematical Sciences

Probability, Statistics and Risk, MVE300

Computer exercise 1
Introduction to Matlab.

Understanding Distributions
Please write your names and "personal identi�cation numbers" here. During the exercise �ll
in the blanks marked by black bullets and answer the posed questions. To pass the exercise,
all questions should be answered and handed in to the computer exercise supervisor.

•

All necessary �les are downloadable from the course home page
http://www.math.chalmers.se/Stat/Grundutb/CTH/mve300/0910/�les/data.zip.
Please download the data.zip �le and uncompress it at the directory you plan to use for the
computer exercises.

In this exercise, you will �rst be given an introduction to Matlab, which is an integrated
technical computing environment. Matlab will be used in the computer exercises throughout
this course. We proceed by exploring the concepts of probability and distributions intuitively
by means of numerical examples in Matlab.

1 Preparatory exercises
1. Read the instructions for the computer exercise and chapter 3.1-3.3 and 4-4.1 in the book

.

2. Make sure you understand what probability and density functions are and how they are
related to the distribution function.

3. Given a sample {x1, .., xn} from a random variable (r.v.) X, how do you construct the
empirical distribution function? What is the empirical distribution function?

•

4. Explain what is meant by the α-quantile of a distribution.

•



ii Computer Exercise 1, MVE300

2 Matlab � the �rst steps
Matlab1 allows the user to combine numeric computation with advanced graphics and visuali-
sation. Short commands can be executed interactively, but for more complicated problems, it
is also possible to perform programming, de�ning own functions &c. In addition to Matlab,
several so-called toolboxes exist for speci�c applications, like signal processing, control theory,
�nite-element methods. In the computer exercises, we will make use of, among others, the
commercial Statistics Toolbox and the freely redistributable WAFO toolbox2.

Use of matrices and vectors in Matlab
Matlab can be used as an advanced calculator; the most common functions are prede�ned. At
the Matlab prompt (>>), you can for example calculate

√
1,192 − 1 + sin(p/2) + e2 by typing

>> sqrt(1.19^2-1)+sin(pi/2)+exp(2)

and the result appears on the screen. When you want to �nd out more about prede�ned
functions in Matlab, the help-command help is useful. It is a good rule to make use of it
during the exercise, even if not explicitly stated in the text! First, write help help. As an
example, write help log to �nd out which base Matlab is using as default in the logarithm
function.
Matlab is shorthand for Matrix laboratory, and use of vectors and matrices is characteristic for
Matlab. All data are stored in vectors or matrices. (With a vector, we mean a row or column
matrix.) The matrix

A =
(

2 0
3 1

)

is entered in the following way:

>> A=[2 0; 3 1]

An example of a vector is given by

>> v=[0 0.1 0.2 0.3];

(A semicolon after a written statement prevents the echo on the screen, and may be useful if
long vectors are entered.) Now, there is a trick to build up vectors in an easy way: the vector
v can also be de�ned by typing

>> v=0:0.1:0.3

The command length (or size) determines the size of the vector (or matrix):

>> vLength=length(v)
>> ASize=size(A)

It goes without saying that accessing elements in a vector is a very important act. Suppose
you want the value of the fourth element in the vector, as well as the values of the �rst three
elements. The solution is given by

>> v(4), v(1:3)
1More information about Matlab is found at http://www.mathworks.com/
2WAFO = Wave Analysis for Fatigue and Oceanography. The WAFO toolbox is put together by the WAFO

group based at Lund University. See http://www.maths.lth.se/matstat/wafo/



Computer Exercise 1, MVE300 iii

or, together,

>> v([4 1:3])

(Note that statements can follow consecutively, separated by commas or semicolons.) Elements
in a vector can be sorted in ascending order:

>> u=[8 -3 2.7]; uSorted=sort(u)

Handling variables and data
We have de�ned a number of variables, and a list of current variables is given by typing
who. The command whos is similar, but does also return the size of the variables. Try these
commands; do you recognise the names of the variables? We close this section by removing
the objects. All variables are removed by just typing the clear. Try help clear to �nd out
how to just remove speci�c variables.
If a worksheet in Excel is saved on disk as a tab separated �le, one can import it to the Matlab
workspace: For example, a data sheet, stored as Box1.txt can be read into Matlab by entering
load Box1.txt -ascii at the Matlab prompt. The data in Box1.txt will then be loaded, and
afterwards, in Matlab's workspace, the data is referred to as Box1, i.e. the �le name without its
extension. This works only on condition that, �rstly, the �le Box1.txt contains only numerical
values, and, secondly, all rows have the same number of elements, and, thirdly, the decimal
sign is a full stop (not a comma). Much more general and convenient is command xlsread;
type help fileformats for more information. If you want, you can open Excel, enter up some
data, save it (see that you get appropriate �le format), and try to load it into the workspace
of Matlab.

Graphics and visualisation
In this section, we will see how to make simple plots in Matlab. After you have studied it,
you will know how to make a plot of a function x 7→ f(x). As an example, let us choose
f(x) = sinx, 0 < x < 4p.
If vectors are de�ned, they may be visualised by the command plot. We �rst de�ne vectors x
and y as

>> x=0:0.05:4*pi; y=sin(x);

Use the command length as you learnt previously, to �nd out the length of x and y, respec-
tively. Two vectors of the same length can be plotted against each other. If you type

>> plot(x,y)

a graphical window will appear, and a plot will be drawn. The �gure is referred to as
figure(1). It is possible to have a number of graphical windows accessible.
Several options can be given to the plot command. One example is colour:

>> plot(x,y,'r')

Another characteristic is the plot symbol. If we plot the values marked as stars, we are
reminded about the de�nition of the vectors in the computer; they are composed of a number
of discrete points.

>> plot(x,y,'*')

You can combine plot options. Read help plot and �nd out what the following command
will perform, then check it on the screen:



iv Computer Exercise 1, MVE300

>> plot(x,y,'md-')

The axis command may sometimes be useful to display interesting regions in a �gure; try

>> axis([0 10 -1.5 1.5])

A plot is most often easier to study if a grid is inserted: try to �nd out how to use the command
grid and then apply a grid to the current plot.
The current �gure is deleted by means of the command clf. An empty window will remain
on the screen after this operation. If you want also the window to disappear, then use the
command close instead.

3 Relative frequencies and distributions
In this section, we will use numerical examples in Matlab to approach the concepts �probability�
and �distribution�. The aim is that you should obtain an intuitive feeling for probabilistic
reasoning, rather than to be immediately confronted with theory.

Exploring data
For illustrational purposes, we will use arti�cial data, which are simulated from a statistical
distribution. This is opposite to real-world data, where no labels, explaining the statistical
distributions, are found. However, although we, statistically speaking, know the origin of the
data, this approach is useful from a pedagogical point of view. Even in research on statistical-
computation algorithms, simulated data are often used for analysis and testing.
To obtain a random data-set of 50 values, type

>> data=randn(1,50);

What is the distribution of your random sample (use help randn)? Write down the density
function.

•

A good rule, whenever a new set of data is encountered: try to plot it in some kind of diagram!
Use the plot command: plot(data,'.-'). Another way of presenting the data is to plot the
sorted data: plot(sort(data),'.-'). From the data set got above, choose a relatively high
number, say, x = 1.1. It may be interesting to calculate the percentage of data which have
values less than or equal to this number. When the number of observations in the sample
increases, we may interpret the ratio as the probability to obtain a value less than x. The ratio
is calculated as follows:

>> x=1.1; ratio=sum(data<=x)/length(data)

(See that you understand the commands!) Try some other values of x. How do you expect the
percentage to change? Compare with the plot with sorted data.

•

The opposite procedure, that is, �nd the value x corresponding to a given probability, is often
more important. This is referred to as �nding the quantiles. We will return to this later.



Computer Exercise 1, MVE300 v

We can of course let the computer choose a large number of values x to examine, and then
try get an overview. This is implemented in a home-written function empcdf. The function
delivers two vectors: x contains the values chosen, while the ratios are collected in ratio. (If
you want to see the code, try type empcdf.) The result is visualised in a new �gure:

>> [x,ratio]=empcdf(data);
>> figure(2);
>> plot(x,ratio,'.')
>> grid on

The �gure should look similar to Figure 1in this paper. It shows in some sense how the values
in data are distributed, and the resulting function is called the empirical distribution function3.
For a value on the abscissa, say, 1.1, we �nd the percentage of values in the sample with values
less than this number.
Another way to plot the empirical distribution function is to make use of the command stairs:

>> n=length(data);
>> figure(3);
>> stairs(sort(data),(1:n)/n)
>> grid on

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1: Empirical distribution function, an example.

Larger samples. The distribution function of a random variable
Let us now study another sample of 50 observations, obeying the same random law as the
previous data. We simulate data, and plot them in the same �gure as before:

>> data=randn(1,50);
>> [x,ratio]=empcdf(data);
>> figure(2);
>> plot(x,ratio,'.')
>> grid on
3Distribution functions are often called cumulative distribution functions; that is why our home-written

routine is called empcdf, empirical cumulative distribution function.



vi Computer Exercise 1, MVE300

Continue with a larger set of data, say, 2000 observations. Analyse them as before:

>> data=randn(1,2000);
>> [x,ratio]=empcdf(data);
>> figure(2);
>> plot(x,ratio,'.')
>> grid on

With a large number of observations, the result approaches the distribution function, that is,
for a random variable X, the function

FX(x) = P(X ≤ x). (1)

In our case, X was chosen from a Gaussian distribution (normal distribution); we had that
X ∈ N(0; 1). It is instructive to plot the theoretical distribution function, implemented in
normcdf, in the same �gure as before:

>> figure(2)
>> hold on
>> plot(x,normcdf(x),'r')
>> hold off

For every distribution function FX , we have that FX(x) → 1 when x →∞ and that FX(x) → 0
when x → −∞. Interpret the �gure! What are on the x and y axis? Estimate the median. Is
it possible to estimate the mean of the distribution from the plot?

•

Quantiles

The concept of quantile (or fractile), mentioned before, is important. The quantile can be
de�ned in di�erent ways � when studying tables &c., you should always make sure of which
de�nition is used. We here de�ne the quantile as a number xα which satis�es

P(X ≤ xα) = 1− α (2)

where α is some small number (common choices: 0.05, 0.01, 0.001). The quantile is not always
unique; for some values of α there might be in�nitely many xα satisfying (2); for other values
of α there might be no quantile xα at all. From your Matlab-plot (figure(2)), using (1) and
the de�nition of quantile, can you estimate the quantile x0,05 when α = 0,05?

• x0.05 =

Compare with the exact value, given by norminv(1-0.05).



Computer Exercise 1, MVE300 vii

Other distributions
Some common choices of distribution functions have their own names. They are not only
just functions in a mathematical sense, but have also been found suitable when modelling
random phenomena in science and technology. The distributions are listed in almost any basic
text-book in mathematical statistics.
Some of the distributions are implemented in the Statistics Toolbox. You have already en-
countered the distribution function when X ∈ N(0; 1); it is often denoted by Φ:

FX(x) = Φ(x) =
1

(2p)1/2
∫ x

−∞
e−t2/2 dt

An easy way to obtain new distributions is scaling random variables or adding constants to
them: Suppose that the distribution function FX(x) of some stochastic variable X is known.
If a new stochastic variable Y is de�ned as Y = aX + b, where a > 0 and b are constants, we
can perform the following calculation

FY (y) = P(Y ≤ y) = P(aX + b ≤ y) = P(X ≤ (y − b)/a) = FX((y − b)/a)

to obtain the distribution function for Y . What happens if a < 0 or if a = 0?

• FY (y) =

This transformation is governed by two parameters a and b; other distributions or transforma-
tions of distributions might be governed by other sets of parameters. When analysing real-world
data, one often knows from experience which type of distribution is suitable to describe the
data. What remains is then to try to estimate the parameters out of data.
The normal distribution, for instance, is characterised by two parameters, m and σ2 (or σ): if
X is standard-normal, i.e. X ∈ N(0; 1), then for Y = σX + m we have that Y ∈ N(m; σ2),
where m and σ2 (or σ) are the parameters.

The Gumbel distribution and the Weibull distribution

Two important distributions, with which we will meet up again in the course, are the Gumbel
distribution (also called type I extreme value distribution, or double exponential distribution)
and the Weibull distribution. A Gumbel distributed random variable X has the distribution
function

FX(x) = exp(−e−(x−b)/a), −∞ < x < ∞.

Here, b is a location parameter and a > 0 is a scaling parameter. If X belongs to a Weibull
distribution, we have

FX(x) = 1− exp(−((x− b)/a)k), x ≥ b (3)

where k is a shape parameter, b is a location parameter and a > 0 is a scaling parameter. How
does FX(x) behave when x < b?

•



viii Computer Exercise 1, MVE300

Let us make some plots of these distribution functions, and let us use routines from the WAFO
toolbox. Try the following two cases of a Gumbel distribution:

>> help wgumbcdf
>> figure
>> x=-4:0.05:6;
>> a=2; b=0; F1=wgumbcdf(x,a,b);
>> a=1; b=1; F2=wgumbcdf(x,a,b);
>> plot(x,F1,'b',x,F2,'r')

Two examples of a Weibull distribution are drawn by typing

>> help wweibcdf
>> figure
>> x=linspace(0,6,200);
>> a=1; k=1; F1=wweibcdf(x,a,k);
>> a=2.3; k=1.8; F2=wweibcdf(x,a,k);
>> plot(x,F1,'b',x,F2,'r')

Note that the WAFO routine wweibcdf models only the case when b = 0, cf (3).

This is version 2010-03-17.


