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Probability, Statistics and Risk, MVE300

Computer exercise 3

Failure Intensities

and the Poisson Distribution
Please write your names and "personal identi�cation numbers" here. During the exercise �ll
in the blanks marked by black bullets and answer the posed questions. To pass the exercise,
all questions should be answered and handed in to the computer exercise supervisor.

•

All necessary �les are downloadable from the course home page
http://www.math.chalmers.se/Stat/Grundutb/CTH/mve300/0910/�les/data.zip.
Please download the data.zip �le and uncompress it at the directory you plan to use for the
computer exercises.

First we will investigate some demographic data from Norway. Then we will learn how to
simulate a Poisson process by means of exponentially distributed random numbers. At the
conclusion, we will estimate accident rates (constant ones) from data where accidents in British
coal mines have been recorded for a long succession of years.

1 Preparatory exercises

1. Read the instructions for the computer exercise and chapter 2.6, 7.1 and 7.4 in the book.

2. For a Poisson point process (= Poisson process on the line) with constant intensity λ
the number of events in an interval [s, s+ t] is N ∈ Po(λt). Use this to show that if one
starts to observe the process at time s then the time to the �rst occurrence of an event,
after s, is exponentially distributed with expectation 1/λ.

•

3. Given a death-rate function λ(t) = α + β exp((t − t0)/c), with parameters as on page
(iii), compute the probability that a person alive on her 30th birthday will reach the age
of 65.

•
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2 Reliability, failure rate, and expectation

Let T denote a non-negative random variable1, and let the corresponding distribution function
and density function be F (t) = P(T ≤ t) and f(t) respectively. Typically, T is the lifetime of
some system. The word lifetime is generic and should be understood in a wide sense: it could
be a lifetime of a light bulb, a distance covered by a motor car, an amount of goods produced
by a machine, etc, before the light bulb, motor car, or production machine, etc, breaks down.
The function R(t) = 1−F (t) is called the reliability of the system considered. The failure rate
function λ(t) (occasionally called hazard-rate function) is de�ned as

λ(t) =
f(t)

1− F (t)
=
f(t)
R(t)

, t > 0, R(t) 6= 0.

If λ(t) is given, but not R(t) or F (t), then use

R(t) = exp
(
−
∫ t

0

λ(τ) dτ
)
, t > 0. (1)

Note that a constant failure-rate function λ(t) = λ0 implies that T is exponentially distributed:
T ∈ Exp(1/λ0). The expectation E(T ) can be determined from the equality

E(T ) =
∫ ∞
0

R(τ) dτ . (2)

3 Norwegian demographic data

When T is the lifetime of a living creature, R(t) and λ(t) are often called the survival function
and the death-rate function respectively. In the data �le norway.dat the Norwegian so-called
life table, valid for the year 2000, is stored:

Age Survivors
x

year
at age x

Males Females

0 100 000 100 000
1 99 574 99 671
2 99 515 99 644

3 99 492 99 613
4 99 476 99 600
5 99 455 99 583

6 99 436 99 580
...

...
...

95 2 684 8 209

96 1 867 6 157
97 1 244 4 391
98 830 2 996

99 549 1 985

Assume that this table is to be interpreted in the following way. If 100 000 hypothetical,
male Norwegians are alive at age 0 (i.e when born), then, on average, 99 574 of them will reach
the age of one (1) year, 99 515 will reach the age of two (2) years, . . . , and 549 will reach the
age of 99 years; the same goes for the �gures for women in the third column. Now, if we divide

1that is to say that P(T < 0) = 0.
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the elements of columns 2 and 3 by N = 100 000, we will obtain the survival function R for
a newborn male (and female, respectively) Norwegian, valid for the year 2000. Assuming that
this is a correct interpretation, let us plot the survival function:

>> N=100000;

>> norway=load('norway.dat')

>> t=norway(:,1);

>> R_male=norway(:,2)/N;

>> R_female=norway(:,3)/N;

>> plot(t,R_male,'b',t,R_female,'r'), grid on

Are there any di�erences between the genders? Make use of the zoom facility.

•

Now, obtain the death-rate function λ by numerical di�erentiation; let us use central di�erence
approximation:

>> n=length(t)

>> lambda_male=zeros(size(t));

>> lambda_male(1)=-(R_male(2)-R_male(1))/R_male(1);

>> for i=2:(n-1), lambda_male(i)=-(R_male(i+1)-R_male(i-1))/(2*R_male(i)); end

>> lambda_male(n)=-(R_male(n)-R_male(n-1))/R_male(n);

Do the same for women's data. Plot both death-rates:

>> plot(t,lambda_male,'b',t,lambda_female,'r'), grid on

Again, describe the di�erences.

•

In the �eld of life insurance one utilizes standardized death-rates. In Norway, the insurance
companies seem to have used (back in 1963?) the following one, called the N-1963 standard.

λM(t) = α+ βet/c, t > 0.

This was valid for males (M); for females (F) they seem to have used

λF(t) = α+ βe(t−t0)/c, t > 0.

In both cases, α ≈ 9 · 10−4 year−1, β ≈ 4,4 · 10−5 year−1, c ≈ 10,34 year, and t0 ≈ 3 year. In
the same �gure as above, plot these two death-rates:

>> alpha=9e-4; beta=4.4e-5; c=10.34; t0=3;

>> t=0:0.1:100;

>> lambdaM=alpha+beta*exp(t/c); % Males

>> lambdaF=alpha+beta*exp((t-t0)/c); % Females

>> hold on

>> plot(t,lambdaM,'k',t,lambdaF,'g')

>> hold off
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Compare the two sets of curves:
Do the standardized death-rate N-1963 agree well with the data from 2000-life table?

•

Judging from the plot, would you say that the death-rates are IFR, DFR, or CFR?2.

•

The integral in Equation 1 is easy to compute:∫ t

0

λM(τ) dτ = αt+ cβ(et/c − 1), t > 0.

So, for males we have

R(t) = exp
(
− (αt+ cβ(et/c − 1))

)
, t > 0.

Analogously for females

R(t) = exp
(
− (αt+ cβ(e(t−t0)/c − e−t0/c))

)
, t > 0.

Now, use Matlab to answer the following questions according to the N-1963 standard:

(i) What is the probability that a certain male/female person will reach the age of at least 65?
The probability asked for is P(T > 65 year); in Matlab:

>> PM=exp(-(alpha*65+c*beta*(exp(65/c)-1))) % Males

>> PF=exp(-(alpha*65+c*beta*(exp((65-t0)/c)-exp(-t0/c)))) % Females

(ii) A certain person is alive on the day he is 30. What is the conditional probability that
the person will live to be 65? In Matlab:

>> PcondM=exp(-(alpha*(65-30)+c*beta*(exp(65/c)-exp(30/c)))) % Males

>> PcondF=exp(-(alpha*(65-30)+c*beta*(exp((65-t0)/c)-exp((30-t0)/c)))) % Females

Can you explain what we did here?

•

(iii) What is the expected lifetime for males and females respectively? We use, of course,
Equation 2. We will integrate numerically by means of the trapezium rule, implemented
in Matlab as the routine trapz:

>> t=0:0.01:120;

>> RM=exp(-(alpha*t+c*beta*(exp(t/c)-1))); % Males

>> RF=exp(-(alpha*t+c*beta*(exp((t-t0)/c)-exp(-t0/c)))); % Females

>> figure, plot(t,RM,'b',t,RF,'r'), grid on

>> ETM=trapz(t,RM) % Males

>> ETF=trapz(t,RF) % Females

2IFR: Increasing failure rate; DFR: decreasing failure rate; CFR: constant failure rate
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Compare the probabilities obtained in case (i) and (ii). Comments? Also, write down the
meaning of �ETM� and �ETF� (use mathematical symbols).

•

�ETM�=

�ETF�=

4 The Poisson process

We know that in a Poisson process the time distance between two consecutive events is ex-
ponentially distributed with parameter 1/λ, where λ is the intensity of the Poisson process.
In this section we will �rst use this property to simulate a Poisson process, and then use the
simulations to estimate λ.

4.1 Simulation of a Poisson process

Let the intensity in the Poisson process be λ = 0,5 (for the sake of simplicity, let λ be physically
dimensionless, i.e. choose the unit 1). We will simulate, say, 100 exponentially-distributed
random numbers, that is, observations of T with distribution function

FT (t) = 1− e−λt, t > 0

The commands are

>> N=100;

>> lambda=0.5;

>> timedistances=exprnd(1/lambda,1,N); % Alternative 1

>> tiemdistances=-log(1-rand(1,N))/lambda; % Alternative 2

Can you explain what we did here? How does the inverse method in �Alternative 2� work
(Hint: see computer exercise 2)?

•

We now have a vector timedistances with the time distances, but more interesting are the
instants where events are occurring. By adding up all distances, we obtain the instants of the
occurrences. The command cumsum in Matlab will be used. First try it on a small vector to
see how this routine works:

>> v=[4 7 5 2];

>> cumsum(v)

Thus, for our vector with simulated time distances, we write analogously

>> instants=cumsum(timedistances);

to get the instants. The value of the Poisson process at time t is equal to the number of events
up to time t. To draw a plot of the Poisson process, we will use stairs in this way:
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>> stairs(instants,1:N)

>> grid on

Now, choose a �xed instant t1, e.g. t1 = 150 (also physically dimensionless). From the plot, you
immediately �nd the number of events which occurred up to time t1. Use the zoom command
if it is hard to read. To get a feeling for the randomness, we can for instance simulate values
from a Poisson distribution, since the number of events, NA occurring in the interval A = [0; t1]
is Poisson distributed with expectation λt1, i.e. NA ∈ Po(λt1). Simulate, say, 10 such Poisson
variables:

>> t1=150;

>> poissrnd(t1*lambda,1,10)

How much does it seem to vary? What is the theoretical value of the varians V(NA)?

• V(NA) =

4.2 Estimation of intensity

The intensity λ of a Poisson process is the expectation for the number of events Y occurring
in the time interval, e.g., [0; t1], divided by the length of the same interval, i.e. t1. Thus, the
parameter λ can be estimated by dividing the number of events in a certain time interval by
the length of the interval.

Estimate for some realizations, i.e. perform the simulation above repeatedly. Compare with
the true value of λ.

>> lambdahat=sum(instants<=t1)/t1

5 Accidents in coal mines in the United Kingdom

The �le coal.dat contains information about accidents in coal mines in the United Kingdom
from 1851 to 1918. Load the data by

>> coal=load('coal.dat')

Type size(coal) and you will �nd that the data are stored as a 153×6 matrix. A description
of the six columns:

Column Content

1 Day of month (DD)
2 Month (MM)
3 Year (CCYY)
4 Ordinal day of year (DDD), i.e. number of days passed of the year
5 Number of days since previous accident
6 Number of perished

Plot the process by

>> N=153;

>> t=cumsum(coal(:,5));

>> stairs(t,1:N)

>> grid on
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Does it look like a Poisson process?

•

If that is the case, we are interested in estimating the intensity. However, the intensity does
not seem to have been constant during the whole period. Divide the data in two periods and
estimate two intensities λ1 and λ2; around instant 1,5 · 104 days � i.e. after 127 accidents �
there seems to be a change in intensities from λ1 to λ2. The estimates of λ1 and λ2 will now
be

>> lambda1hat=127/1.5e4 % unit: 1 day^(-1)

>> lambda2hat=(N-127)/(t(end)-1.5e4) % unit: 1 day^(-1)

Plot the process with years on the abscissa (x-axis):

>> stairs(coal(:,3)+coal(:,4)/365.25,1:N), grid on

When do changes occur? Can they be explained?

•

Consider also the cumulative number of perished by typing

>> stairs(coal(:,3)+coal(:,4)/365.25,cumsum(coal(:,6))), grid on

This is version 2010-03-24.


