
Chalmers-University of Gothenburg Department of Mathematical Sciences

Probability, Statistics and Risk, MVE300

Computer exercise 5
System Reliability

Please write your names and "personal identi�cation numbers" here. During the exercise �ll
in the blanks marked by black bullets and answer the posed questions. To pass the exercise,
all questions should be answered and handed in to the computer exercise supervisor.

•

All necessary �les are downloadable from the course home page
http://www.math.chalmers.se/Stat/Grundutb/CTH/mve240/0809/�les/data.zip.
Please download the data.zip �le and uncompress it at the directory you plan to use for the
computer exercises.

1 Preparatory exercises
1. Read the instructions for the computer exercise and chapter 8-8.1 in the book.

2. On page 201 in the book the distribution for the minimum of n independent variables,
X1, . . . , Xn, is computed. Give the distribution for the maximum, i.e. compute
P(max(X1, . . . , Xn) ≤ z).

•

3. Solve exercise 8.8 (without looking at the solution!). Also, give the failure function for
this example.

•

4. Show that P(S ≤ R) =
∫∞
−∞ FS(r)fR(r) dr, if S and R are independent.

•
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2 System Reliability
The reliability of an engineering system1 is often de�ned as the probability that the system will
function as intended. We will also refer to the opposite concept, namely the failure probability
Pf (f stands for failure), which is the probability that the system will not function as intended.
The level of performance of a system will obviously depend on the properties of the system.
Assume that all interesting properties of an engineering system are described by a set of
parameters x1, x2, . . . , xn. We want the system to endure a set of loads of our choice2 (the
system might be subjected to more than one load). The magnitudes of these loads � let us
denote them y1, y2, . . . , ym � must however be limited, due to engineering imperfection, cost
limits, time limits, and the like: we understand that there are combinations of y1, y2, . . . , ym

and x1, x2, . . . , xn where the system capacity is exceeded and where the system will inevitably
break down. We formalise this

The system functions as intended ⇔ h(y1; . . . ; ym;x1; . . . ;xn) > 0
The system does not function as intended ⇔ h(y1; . . . ; ym;x1; . . . ;xn) < 0

The function h is called the failure function (performance function, state function). If the
parameters and the applied �loads� are marred by randomness, we instead treat them as
random variables Y1, Y2, . . . , Ym and X1, X2, . . . , Xn. In terms hereof, we can now write the
failure probability Pf as

Pf = P(h(Y1; . . . ; Ym; X1; . . . ;Xn) < 0)

3 In this computer exercise, our goal is to calculate Pf . The function h will always be given, as
will the distribution functions of Y1, . . . , Ym and X1, . . . , Xn. In Section 1 we will obtain Pf

from numerical integration and simulations, in Section 2 from an explicit expression and from
simulations, and in Sections 3 and 4 from simulations only. No real-world data today, that is!

3 A standard example
Consider a construction of some kind. A load denoted S has the distribution function

FS(x) = exp(−e−(x−bS)/aS )

where bS = 55 and aS = 2,5 and the construction has a strength (resistance) R with distribu-
tion

FR(x) =
{

1− exp(−((x− bR)/aR)cR), x > bR

0, x ≤ bR

where bR = 70, aR = 5, and cR = 2. Do you recognize the distributions (normal, Weibull,
Gumbel, uniform . . . )?

•
1e.g. a construction, a vehicle, a production line, a multi-article stock-room logistic system, a computer

network, a nuclear power-plant, a dam, a communication satellite, or a �nance portfolio.
2e.g. the construction must bear a certain amount of wind load or weight; the vehicle must cover a satis-

factory distance before its engine starts malfunctioning; the production line must produce goods continuously
for at least a week (say) to be pro�table; the stock-room logistic system must deliver at least 99 % (say) of the
goods on order on time and to the right orderer; etc.

3The random variable Z = h(Y1; . . . ; Ym; X1; . . . ; Xn) is sometimes referred to as the safety margin.
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Assume that load and strength are independent. In this case, the failure function h is simple:

h(R; S) = R− S

We will �rst determine the probability of failure, Pf = P(h(R;S) < 0) = P(R − S < 0) =
P(S > R). It can be shown that Pf can be written as

Pf = P(S > R) = 1− P(S ≤ R) = 1−
∫ ∞

−∞
FS(r)fR(r) dr =

= 1−
∫ ∞

bR

exp(−e−(r−bS)/aS )
cR

aR

(
r − bR

aR

)cR−1

e−((r−bR)/aR)cR dr

This horrible integral cannot be computed analytically. There is in Matlab, however, a simple
numerical integration routine, trapz, using the trapezium rule. To use it, one must de�ne the
integrand on a grid4:

>> aS=2.5; bS=55; aR=5; bR=70; cR=2; % cR>=1
>> r=bR:0.01:150;
>> integrand=exp(-exp(-(r-bS)/aS)).*(cR/aR).*((r-bR)/aR).^(cR-1).*exp(-((r-bR)/aR).^cR);

Iit is a good rule to plot the integrand before performing a numerical integration.

>> plot(r,integrand), grid on

From the plot it seems that 150 will do as an upper truncation limit; less would also have been
su�cient. Now, let us calculate Pf by means of trapz:

>> Pf=1-trapz(r,integrand)

Make sure you understand what is meant by failure function, h, and failure probability, Pf .

• h :

• Pf :

Simulation of Pf

Above you probably recognized the Gumbel distribution of S and the Weibull distribution of
R. Since we know the parameters aS , bS , aR, bR, and cR, we can simulate S and R (and hence
h(S; R)) from these distributions. Simulating many times, N = 200 000 say, we can estimate
Pf frequentistically:

P̂f =
number of simulations (among the N simulations) where h(S; R) < 0

N

In Matlab5:

>> N=200000;
>> S=wgumbrnd(aS,bS,[],1,N);
>> R=bR+wweibrnd(aR,cR,1,N);
>> h=R-S;
>> Pfhat=sum(h<0)/N
4Here we have used that cR = 2 ≥ 1.
5Remember the routines rand, randn, wweibrnd, wgumbrnd, etc. from Computer exercise 1.
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Do you understand what we did here? Compare with the value obtained from the numerical
integration above! Repeat the simulation a couple of times to get a feeling for how stable the
estimate is. Why is it not that clever to choose, for example, N = 500 (N=500)?

•

4 Travel times
6A limousine operates from an airport, goes to town I, then to town II, and then returns to
the airport as shown in Figure 1. Because of varied tra�c conditions, the travel time required
in each leg of the journey is random, with the following statistics:
Travel time Mean Standard deviation
T1 40 min 10 min
T2 15 min 5 min
T3 50 min 10 min

We assume that the tra�c conditions over the three legs of the journey can be considered
independent (may this be realistic?). The scheduled time for each round trip around the loop
is two hours (2 h = 120 min). Determine the probability that a round trip will not be com-
pleted on schedule.

Airport

I

II

T1
T2

T3

Figure 1: Travel-times problem

The failure function is given by

h(T1, T2, T3) = 120 min− (T1 + T2 + T3).

Assume that T1, T2 and T3 are normally distributed. Hence, the probability of failure can be
calculated explicitly. Give the distribution of T1 + T2 + T3.

• T1 + T2 + T3 ∈

From this it follows that

Pf = P(h(T1, T2, T3) < 0) = P(T1 + T2 + T3 > 120 min) =

= 1− P(T1 + T2 + T3 ≤ 120 min) = 1− Φ
(120 min− 105 min

15 min

)
= 1− Φ(1)

6This example is taken from Ang, Alfredo H S � Tang, Wilson H: Probability Concepts in Engineering
Planning and Design. � Volume II: Decision, Risk, and Reliability. � New York: John Wiley, 1984. � ISBN
0-471-03200-X.



Computer Exercise 5, MVE300 v

This is calculated in Matlab by

>> Pf=1-normcdf(1)

• Pf =

Comment?

Simulation of Pf

In the previous example, we estimated Pf by means of simulations. Let us do that again:

>> N=10000;
>> T1=40+10*randn(1,N);
>> T2=15+5*randn(1,N);
>> T3=50+10*randn(1,N);
>> h=120-(T1+T2+T3);
>> Pfhat=sum(h<0)/N

Again, repeat a couple of times and compare!

5 Spillway capacity

We will now study a civil-engineering problem: the capacity of spillway gates in dam construc-
tions. This time we will rely on simulations only. We begin with an example: the Folsom Dam
in California and what happened to it a couple of years ago. Thereafter we will present a model
for the discharge capacity of a spillway of a certain kind, and a failure function will be pre-
sented. From assumed distributions we will then simulate in order to estimate the probability
that the spillway capacity will be exceeded.

The Folsom Dam

The Folsom Dam in California is a concrete gravity structure on the American River. The dam
has a structural height of 340 ft. The dam crest is at elevation 481 ft with length of 26 670 ft,
and width of 36 ft. The maximum base width is 270 ft.
Normally, when a reservoir becomes too full � like after a heavy rainstorm � engineers open
spillway gates, which allow the excess water to drain out of the reservoir at a controlled rate
of speed. When these gates open suddenly and engineers lose the ability to control the �ow,
disaster can result.
On the 17th of July 1995, spillway gate No 3 of the Folsom Dam su�ered a partial failure
(Figure 2), which allowed an uncontrolled maximum �ow of approximately 40 000 ft3/s to
pass the dam. Nearly 40 % of Folsom Lake drained out past the broken gate before it could
be repaired. Fortunately, this release was well below the �ow capacity of the river downstream
from the dam, and there was no �ooding outside the embankments7.

7See http://www.pbs.org/wgbh/buildingbig/wonder/structure/folsom.html.
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Figure 2: Failure of a spillway

A model, and simulating from it
8Insu�cient spillway capacity to carry the in�ow water during an extreme �ood is obviously
a major cause of dam failure. For a spillway of a certain kind, the discharge Qc is given by

Qc = KCLH3/2

Here




C=the discharge coe�cient
L=e�ective length of spillway
H=head (maximum height) of water crest at the spillway (e�ects of velocity of approach are included)
K=correction for imperfections in the empirical formula

The in�ow rate at the spillway can be modelled by

QL = RQi

where Qi is the peak �ow upstream to the reservoir and R is the attenuation factor to account
for the volume e�ect of the reservoir. Insu�cient spillway capacity is per de�nition at hand
when

Qc < QL.

Assume that K = 1,0 is deterministic, and suppose that the remaining variables have the
following statistics:

Mean Standard deviation Distribution
C 3,85 0,27 Normal
L 93,4 5,6 Normal
H 12,0 0,72 Normal
R 0,7 0,1 Normal
Qi 9,1 · 103 3,2 · 103 Gumbel

The random variables C, L, H, R, and Qi are considered independent. Give the failure
function for the system:

8This example is taken from Ang, Alfredo H S � Tang, Wilson H: Probability Concepts in Engineering
Planning and Design. � Volume II: Decision, Risk, and Reliability. � New York: John Wiley, 1984. � ISBN
0-471-03200-X.



Computer Exercise 5, MVE300 vii

• h(C; L;H;R; Qi) =

As usual, let us estimate Pf from simulations in Matlab:

>> K=1.0;
>> EC=3.85; DC=0.27;
>> EL=93.4; DL=5.6;
>> EH=12.0; DH=0.72;
>> ER=0.7; DR=0.1;
>> EQi=9.1e3; DQi=3.2e3;
>> aQi=sqrt(6)*DQi/pi, bQi=EQi-0.57721566*aQi % • Can you explain this?
>> N=2000; % for example
>> C=EC+DC*randn(1,N);
>> L=EL+DL*randn(1,N);
>> H=EH+DH*randn(1,N);
>> R=ER+DR*randn(1,N);
>> Qi=wgumbrnd(aQi,bQi,[],1,N);
>> h=K*C.*L.*(H.^(3/2))-R.*Qi;
>> Pfhat=sum(h<0)/N

Repeat this a couple of times as usual; to do this it might facilitate to make a Matlab macro
�le, a so called m-�le. If you do not no how to do m-�les, ask one of the supervisors; in this
case, writing one is quite easy!
Do not forget to plot the failure function h between the sets of simulations:

plot(1:N,h,'.'), grid on

6 MOSFET
A depletion-mode MOSFET (Metal-Oxide-Semiconductor Field-E�ect Transistor) is a three-
terminal electronic device. When an n-channel MOSFET is connected like this:

• •

•

−
+

U

I

U

I

I

then it has the following voltage-current characteristic.

I =





A · VTR
2; U > VTR (Constant current region)

= A · (2VTRU − U2); 0 < U < VTR (Triode region)
= unde�ned?; U < 0

Here U is the applied voltage9, VTR is a threshold voltage (always positive for n-channel
MOSFETs), and A is the conductance parameter.
When current �ows into the positive terminal of a passive device, electrical power is dissipated
in the device as heat. This electrical power P is equal to the product of the port voltage and

9i.e. the drain-source voltage
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port current. For a multiport device, the total electrical power input is given by the sum of
input power taken over all ports. The dissipated energy will increase the temperature of the
device, which a�ects the properties of it. Every device has a maximum allowable operating
temperature limit that must not be exceeded. In other words: there is a maximum electrical
power limit Pmax. In our case,

UI < Pmax

if the MOSFET is to work well. Assume that U , VTR, and A are independent random vari-

ables:
U Normal with mean 10 V and standard deviation 2 V
A Log-normal with median 1 mA/V2 and σ = 0,2
VTR Uniform between 3 V and 5 V

and that Pmax = 300 mW. Explain what we do now:

>> Pmax=300e-3;
>> N=20000;
>> EU=10; DU=2;
>> medianA=1e-3; sigma=0.2;
>> aVTR=3; bVTR=5;
>> U=EU+DU*randn(1,N);
>> A=medianA*exp(sigma*randn(1,N));
>> VTR=aVTR+(bVTR-aVTR)*rand(1,N);
>> I=zeros(1,N);
>> index1=find(U>=VTR);
>> index2=find(U<VTR);
>> I(index1)=A(index1).*VTR(index1).^2; % Constant current region
>> I(index2)=A(index2).*(2*VTR(index2).*U(index2)-U(index2).^2); % Triode region
>> h=Pmax-U.*I;
>> Pfhat=sum(h<0)/N

Do not forget plotting and repeating. What would happen if P(U < 0) was not negligible?
When U < 0, it is perhaps bad for the MOSFET, so let us consider this case to be a failure.
Write down a failure function with this extra condition.

• h(Pmax; U ;A; VTR)=

This is version 2010-04-26.


