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ML estimates for typical models:
Distribution ML estimates (σ2

E)∗

X ∈ Po(θ) θ∗ = x̄
θ∗

n

K ∈ Bin(n, p) θ∗ =
k

n

θ∗(1− θ∗)
n

X ∈ Exp(θ) θ∗ = x̄
(θ∗)2

n

X ∈ N(m, σ2) θ∗ = (x̄ , s2
n)

( s2
n

n
,

2(s2
n)2

n

)
Example - times between earthquakes: Model exponential cdf
P(T ≤ t) = 1− exp(−t/a); With θ = a table gives a∗ = 437.2 days;
Variance of estimation error

(σ2
E)∗ =

(θ∗)2

n
=

437.22

63
= 3034, day2.

Hence the standard deviation is
√

3034 = 55.08 days. ”Common sense”
uncertainty 437.2± 2 · 55.08.



In general

I Choose a cdf F (x ; θ) for data (θ unknown parameter to be selected).

I Compute likelihood function L(θ) (odds for θ). Find θ∗ - the value
of parameter maximizing the likelihood function (having maximal
odds).

I e = θ − θ∗ - estimation error (unknown) and modeled as rv. E .

I If E[E ] = 0 then estimation is unbiased.
I If standard deviation of the error σE → 0 as n→∞ then

estimation is consistent.

I For large n (number of observations) E is approximately normally
distributed N(0, σ2

E), σE is an estimated by σ∗E .

Error in expected time between earthquakes E is approx. N(0, 3083).



Quantiles of E :

The error distribution FE(e) describes sizes of errors as well as the
frequencies with which those occur. Often one uses quantiles eα to
describe the variability. Obviously we have that

P(e1−α/2 ≤ E ≤ eα/2) = 1− α, or P(E ≤ eα) = 1− α.

If E is approximately N
(
0, (σ2

E)∗
)

then

eα/2 ≈ λα/2 · σ∗E , e1−α/2 ≈ −λα/2 · σ∗E .

Quantiles of the standard normal distribution.

α 0.10 0.05 0.025 0.01 0.005 0.001
λα 1.28 1.64 1.96 2.33 2.58 3.09



Approximative confidence interval:

Example - times between earthquakes: Let choose α = 0.05, then

eα/2 ≈ 1.96·
√

3083 = 108.8, and e1−α/2 ≈ −1.96·
√

3083 = −108.8.

Consequently P(−108.8 ≤ E ≤ 108.8) ≈ 0.95. Since θ∗ = 437.2 we say
that with approximate confidence 1− α = 0.95

−108.8 ≤ θ − θ∗ ≤ 108.8, or θ ∈ [437.2− 108.8, 437.2 + 108.8]

Confidence interval can be seen as an interval estimate of a parameter,
i.e. instead of one value we give a set of possible values.

In general for any ML-estimator, the approximate 1− α∗ confidence
interval is

θ∗ − λα/2 · σ∗E ≤ θ ≤ θ∗ + λα/2 · σ∗E .
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Since θ∗ ≈ E[Θ∗] while σ∗E ≈
√

V[Θ∗] one can also give the following alter-
native formulation

E[Θ∗]− λα/2 ·
√

V[Θ∗] ≤ θ ≤ E[Θ∗] + λα/2 ·
√

V[Θ∗], (1)

with approximative confidence 1− α. Here Θ∗ is approx. N(θ∗, (σ2
E)∗).

Example: Suppose we are interested in probability that distance between
earthquakes is longer than 1500 days, viz. p = P(T > 1500). An possible
estimate is

p∗ = exp(−1500/θ∗) = exp(−1500/437.2) = 0.0324.

Confidence interval: Let write P∗ = exp(−1500/Θ∗) and employ (??):

E[P∗]− λα/2 ·
√

V[P∗] ≤ θ ≤ E[P∗] + λα/2 ·
√

V[P∗],

then use Gauss’ formulae to evaluate E[P∗], V[P∗], see blackboard.

This approach is called Delta-method.



More complex example:
Suppose that we are measuring the concentration of radon in buildings.
At some location 40 houses were selected at random out of 200. Then
average yearly concentration X were measured. The requirement is that
the yearly mean concentration should be below 200 Bq/m3. By plotting
the 40 measurement on normal probability paper we conclude that the
measured values are N(m, σ2). The m∗ = x̄ = 120 while
(σ2)∗ = s2

n = 400. One decided to compute the quantile x0.001,

x∗0.001 = 120 + 3.09 ·
√

400 = 181.8 < 200.

Hence the number of houses that can have concentration above 181 is
160 · 0.001 = 0.16 which is small. Find confidence interval for x0.001

instead of x∗0.001! Let X ∗0.001 be the estimator then employ (??):

E[X ∗0.001]− λα/2 ·
√

V[X ∗0.001] ≤ θ ≤ E[X ∗0.001] + λα/2 ·
√

V[X ∗0.001].

Let M∗ and Σ∗ be the estimators of mean m and σ2, resp., then

V[X ∗0.001] = V[M∗ + 3.09 ·
√

Σ∗].

Use Gauss formulas and
(
V[M∗],V[Σ∗]

)
≈
( s2

n

n ,
2(s2

n )2

n

)
, Cov[M∗,Σ∗] = 0.



Gauss’ Approximations.
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Let X and Y be independent random variables with expectations mX ,mY ,
respectively. For a smooth function h the following approximations

E[h(X ,Y )] ≈ h(mX ,mY ),

V[h(X ,Y )] ≈
[
h1(mX ,mY )

]2
V[X ] +

[
h2(mX ,mY )

]2
V[Y ]

+2h1(mX ,mY ) h2(mX ,mY ) Cov[X ,Y ].

where

h1(x , y) =
∂

∂x
h(x , y), h2(x , y) =

∂

∂y
h(x , y).

In our case X = M∗, Y = Σ∗ and h(x , y) = x + 3.09
√

y hence

h1(x , y) = 1, h2(x , y) = 3.09 · /(2
√

y).



Even more complex example:

Recall the data of 22 lifetimes (there were (n = 22) units tested). For
ball bearings lifetime X the rating life, L10 should be estimated.1 Assume
the Weibull model is valid for the distribution of the lifetime:

FX (x) = 1− e−(x/a)c

, x ≥ 0,

then L10 = a ·
(
− ln(1− 1

10 )
)1/c

. For our data set a∗ = 82.08 and
c∗ = 2.06 and hence

L∗10 = a∗ ·
(
− ln(1− 1

10
)
)1/c∗

= 27.53 · 106

What about the confidence interval? Again employ (??):

E[L∗10]− λα/2 ·
√

V[L∗10] ≤ θ ≤ E[L∗10] + λα/2 ·
√

V[L∗10],

and use Gauss’ formulae to evaluate E[L∗10], V[L∗10].

1L10 satisfies P(X ≤ L10) = 1/10.



I X = A∗ and Y = C∗, mX = a∗ = 82.08, mY = c∗ = 2.06

I h(x , y) = x ·
(
− ln(1− 1

10 )
)1/y

.

I V[A∗] ≈ 1.087 (a∗/c∗)2

n , V[C∗] ≈ 0.608 (c∗)2

n , Cov[A∗,B∗] ≈ 0.255 a∗

n .

I h1(x , y) =
(
− ln(1− 1

10 )
)1/y

,

h2(x , y) = − x
y2 ·
(
ln(− ln(1− 1

10 ))
)
·
(
− ln(1− 1

10 )
)1/y

.

Now we can compute the variance

V[L∗10] = V[h(A∗,C∗)] ≈ h1(a∗, c∗)2V[A∗] + h2(a∗, c∗)2V[C∗]

+ 2 h1(a∗, c∗) · h2(a∗, c∗) Cov[A∗,C∗] = 18.5.

Since
√

V[L∗10] ≈ 4.3, then with approximate confidence 95% L10 is in

[ 27.53−1.96·4.3, 27.53+1.96·4.3 ] = [ 19.1, 36.0 ] milions of revolutions.



Connection to hypothesis testing:

If one wishes to test whether a parameter θ has a specific value

H0 : θ = θ0

One chooses size of error α, i.e. probability of rejecting a true hypothesis
is α. Then the test can be performed by constructing an interval that
with confidence 1− α contains the true value of the parameter.

If θ0 is not contained in the interval than one rejects the hypothesis H0

that θ = θ0.

Suppose that a dealer claims that L10 = 40 millions of resolutions. Since

our confidence interval [ 19.1, 36.0 ] does not contain value 40 thus, with

”about” 5% probability of making error, we reject the hypothesis that the

quality of the ball bearings is L10 = 40 millions of resolutions.



Examples of exact confidence intervals:

Suppose we have n observations x̄ =
∑

xi/n then:

I 1− α confidence interval for m in N(m, σ2) (σ unknown)[
x̄− tα/2(n − 1)

sn−1√
n
, x̄ + tα/2(n − 1)

sn−1√
n

]
where s2

n−1 =
∑

(xi − x̄)2/(n − 1).

I 1− α confidence interval for m in Po(m)

θ ∈

[
χ2

1−α/2(2n x̄)

2n
,
χ2
α/2(2n x̄ + 2)

2n

]
.

I 1− α confidence interval for a in Exp(a)

θ ∈

[
2n x̄

χ2
α/2(2n)

,
2n x̄

χ2
1−α/2(2n)

]
.



Credibility intervals:

I In the Bayessian approach the lack of knowledge of parameter value
θ is described using the probability densities f (θ) (odds). Random
variable Θ having the pdf f (θ) models our knowledge about θ.

I The initial knowledge is described using f prior(θ) density and as the
data are gathered it is updated

f post(θ) = c L(θ)f prior(θ).

I The pdf f post(θ) summarizes our knowledge about θ. However if
one value of for the parameter is needed then

θpredictive = E[Θ] =

∫
θf post(θ) dθ.

I If one wishes to describe the variability of θ by means of an interval
then the so called credibility interval can be computed

[ θ
post
1−α/2, θ

post
α/2 ]


