Lecture 12. Confidence intervals - - revisited

Igor Rychlik

Chalmers Department of Mathematical Sciences

Probability, Statistics and Risk, MVE300 • Chalmers • May 2011

ML estimates for typical models:

Distribution	ML estimates	$(\sigma_{\mathcal{E}}^2)^*$
$X \in Po(heta)$	$\theta^* = \bar{x}$	$\frac{\theta^*}{n}$
$K \in Bin(n,p)$	$\theta^* = \frac{k}{n}$	$\frac{\theta^*(1-\theta^*)}{n}$
$X\in Exp(heta)$	$\theta^* = \bar{x}$	$\frac{(\theta^*)^2}{n}$
$X \in N(m,\sigma^2)$	$\theta^* = (\bar{x}, s_n^2)$	$\big(\frac{s_n^2}{n},\frac{2(s_n^2)^2}{n}\big)$

Example - times between earthquakes: Model exponential cdf $P(T \le t) = 1 - \exp(-t/a)$; With $\theta = a$ table gives $a^* = 437.2$ days; Variance of estimation error

$$(\sigma_{\mathcal{E}}^2)^* = \frac{(\theta^*)^2}{n} = \frac{437.2^2}{63} = 3034, \quad \mathsf{day}^2.$$

Hence the standard deviation is $\sqrt{3034}=55.08$ days. "Common sense" uncertainty 437.2 \pm 2 \cdot 55.08.

In general

- Choose a cdf $F(x; \theta)$ for data (θ unknown parameter to be selected).
- Compute likelihood function L(θ) (odds for θ). Find θ* the value of parameter maximizing the likelihood function (having maximal odds).
- $e = \theta \theta^*$ estimation error (unknown) and modeled as rv. \mathcal{E} .
 - If $E[\mathcal{E}] = 0$ then estimation is unbiased.
 - ▶ If standard deviation of the error $\sigma_{\mathcal{E}} \rightarrow 0$ as $n \rightarrow \infty$ then estimation is consistent.
- For large n (number of observations) *E* is approximately normally distributed N(0, σ_E²), σ_E is an estimated by σ_E^{*}.

Error in expected time between earthquakes \mathcal{E} is approx. N(0, 3083).

Quantiles of \mathcal{E} :

The error distribution $F_{\mathcal{E}}(e)$ describes sizes of errors as well as the frequencies with which those occur. Often one uses quantiles e_{α} to describe the variability. Obviously we have that

$$\mathsf{P}(\mathbf{e}_{1-\alpha/2} \leq \mathcal{E} \leq \mathbf{e}_{\alpha/2}) = 1 - \alpha, \quad \text{or} \quad \mathsf{P}(\mathcal{E} \leq \mathbf{e}_{\alpha}) = 1 - \alpha.$$

If \mathcal{E} is approximately $N\left(0, (\sigma_{\mathcal{E}}^2)^*\right)$ then

$$e_{\alpha/2} \approx \lambda_{\alpha/2} \cdot \sigma_{\mathcal{E}}^*, \qquad e_{1-\alpha/2} \approx -\lambda_{\alpha/2} \cdot \sigma_{\mathcal{E}}^*.$$

Quantiles of the standard normal distribution.

α	0.10	0.05	0.025	0.01	0.005	0.001
λ_{lpha}	1.28	1.64	1.96	2.33	2.58	3.09

Approximative confidence interval:

Example - times between earthquakes: Let choose $\alpha = 0.05$, then

 $e_{\alpha/2} \approx 1.96 \cdot \sqrt{3083} = 108.8$, and $e_{1-\alpha/2} \approx -1.96 \cdot \sqrt{3083} = -108.8$.

Consequently P($-108.8 \le \mathcal{E} \le 108.8$) ≈ 0.95 . Since $\theta^* = 437.2$ we say that with approximate confidence $1 - \alpha = 0.95$

 $-108.8 \le \theta - \theta^* \le 108.8$, or $\theta \in [437.2 - 108.8, 437.2 + 108.8]$

Confidence interval can be seen as an **interval estimate** of a parameter, i.e. instead of one value we give a set of possible values.

In general for any ML-estimator, the approximate $1-\alpha^*$ confidence interval is

$$\theta^* - \lambda_{\alpha/2} \cdot \sigma_{\mathcal{E}}^* \le \theta \le \theta^* + \lambda_{\alpha/2} \cdot \sigma_{\mathcal{E}}^*.$$

Since $\theta^* \approx E[\Theta^*]$ while $\sigma_{\mathcal{E}}^* \approx \sqrt{V[\Theta^*]}$ one can also give the following alternative formulation

 $\mathsf{E}[\Theta^*] - \lambda_{\alpha/2} \cdot \sqrt{\mathsf{V}[\Theta^*]} \le \theta \le \mathsf{E}[\Theta^*] + \lambda_{\alpha/2} \cdot \sqrt{\mathsf{V}[\Theta^*]},\tag{1}$

with approximative confidence $1 - \alpha$. Here Θ^* is approx. $N(\theta^*, (\sigma_{\mathcal{E}}^2)^*)$.

Example: Suppose we are interested in probability that distance between earthquakes is longer than 1500 days, viz. p = P(T > 1500). An possible estimate is

$$p^* = \exp(-1500/\theta^*) = \exp(-1500/437.2) = 0.0324.$$

Confidence interval: Let write $P^* = \exp(-1500/\Theta^*)$ and employ (??):

$$\mathsf{E}[P^*] - \lambda_{\alpha/2} \cdot \sqrt{\mathsf{V}[P^*]} \le \theta \le \mathsf{E}[P^*] + \lambda_{\alpha/2} \cdot \sqrt{\mathsf{V}[P^*]},$$

then use **Gauss' formulae** to evaluate $E[P^*]$, $V[P^*]$, see blackboard. **This approach is called Delta-method**.

More complex example:

Suppose that we are measuring the concentration of radon in buildings. At some location 40 houses were selected at random out of 200. Then average yearly concentration X were measured. The requirement is that the yearly mean concentration should be below 200 Bq/m³. By plotting the 40 measurement on normal probability paper we conclude that the measured values are $N(m, \sigma^2)$. The $m^* = \bar{x} = 120$ while $(\sigma^2)^* = s_n^2 = 400$. One decided to compute the quantile $x_{0.001}$,

$$x_{0.001}^* = 120 + 3.09 \cdot \sqrt{400} = 181.8 < 200.$$

Hence the number of houses that can have concentration above 181 is $160 \cdot 0.001 = 0.16$ which is small. Find confidence interval for $x_{0.001}$ instead of $x_{0.001}^*$! Let $X_{0.001}^*$ be the estimator then employ (??):

$$\mathsf{E}[X_{0.001}^*] - \lambda_{\alpha/2} \cdot \sqrt{\mathsf{V}[X_{0.001}^*]} \le \theta \le \mathsf{E}[X_{0.001}^*] + \lambda_{\alpha/2} \cdot \sqrt{\mathsf{V}[X_{0.001}^*]}.$$

Let M^* and Σ^* be the estimators of mean m and σ^2 , resp., then

$$V[X_{0.001}^*] = V[M^* + 3.09 \cdot \sqrt{\Sigma^*}].$$

Use Gauss formulas and $\left(\mathsf{V}[M^*],\mathsf{V}[\Sigma^*]\right) \approx \left(\frac{s_n^2}{n},\frac{2(s_n^2)^2}{n}\right)$, $\mathsf{Cov}[M^*,\Sigma^*] = 0$.

Gauss' Approximations.

Let X and Y be independent random variables with expectations m_X, m_Y, n_Y , respectively. For a smooth function h the following approximations

$$\begin{aligned} \mathsf{E}[h(X,Y)] &\approx h(m_X,m_Y), \\ \mathsf{V}[h(X,Y)] &\approx \left[h_1(m_X,m_Y)\right]^2 \mathsf{V}[X] + \left[h_2(m_X,m_Y)\right]^2 \mathsf{V}[Y] \\ &+ 2h_1(m_X,m_Y) h_2(m_X,m_Y) \operatorname{Cov}[X,Y]. \end{aligned}$$

where

$$h_1(x,y) = \frac{\partial}{\partial x}h(x,y), \qquad h_2(x,y) = \frac{\partial}{\partial y}h(x,y).$$

In our case $X = M^*$, $Y = \Sigma^*$ and $h(x, y) = x + 3.09\sqrt{y}$ hence

$$h_1(x,y) = 1,$$
 $h_2(x,y) = 3.09 \cdot /(2\sqrt{y}).$

Even more complex example:

Recall the data of 22 lifetimes (there were (n = 22) units tested). For ball bearings lifetime X the *rating life*, L_{10} should be estimated.¹ Assume the Weibull model is valid for the distribution of the lifetime:

$$F_X(x) = 1 - e^{-(x/a)^c}, \quad x \ge 0,$$

then $L_{10} = a \cdot \left(-\ln(1-\frac{1}{10})\right)^{1/c}$. For our data set $a^* = 82.08$ and $c^* = 2.06$ and hence

$$L_{10}^* = a^* \cdot \left(-\ln(1-\frac{1}{10})\right)^{1/c^*} = 27.53 \cdot 10^6$$

What about the confidence interval? Again employ (??):

$$\mathsf{E}[L_{10}^*] - \lambda_{\alpha/2} \cdot \sqrt{\mathsf{V}[L_{10}^*]} \le \theta \le \mathsf{E}[L_{10}^*] + \lambda_{\alpha/2} \cdot \sqrt{\mathsf{V}[L_{10}^*]},$$

and use **Gauss' formulae** to evaluate $E[L_{10}^*]$, $V[L_{10}^*]$.

 $^{1}L_{10}$ satisfies P(X $\leq L_{10}$) = 1/10.

Now we can compute the variance

$$V[L_{10}^*] = V[h(A^*, C^*)] \approx h_1(a^*, c^*)^2 V[A^*] + h_2(a^*, c^*)^2 V[C^*] + 2 h_1(a^*, c^*) \cdot h_2(a^*, c^*) \operatorname{Cov}[A^*, C^*] = 18.5.$$

Since $\sqrt{V[L_{10}^*]} \approx 4.3$, then with approximate confidence 95% L_{10} is in $[27.53-1.96\cdot4.3, 27.53+1.96\cdot4.3] = [19.1, 36.0]$ millions of revolutions.

Connection to hypothesis testing:

If one wishes to test whether a parameter θ has a specific value

 $H_0: \theta = \theta_0$

One chooses size of error α , i.e. probability of rejecting a true hypothesis is α . Then the test can be performed by constructing an interval that with confidence $1 - \alpha$ contains the true value of the parameter.

If θ_0 is not contained in the interval than one rejects the hypothesis H_0 that $\theta = \theta_0$.

Suppose that a dealer claims that $L_{10} = 40$ millions of resolutions. Since our confidence interval [19.1, 36.0] does not contain value 40 thus, with "about" 5% probability of making error, we reject the hypothesis that the quality of the ball bearings is $L_{10} = 40$ millions of resolutions.

Examples of exact confidence intervals:

Suppose we have *n* observations $\bar{\mathbf{x}} = \sum x_i/n$ then:

▶ $1 - \alpha$ confidence interval for *m* in N(*m*, σ^2) (σ unknown)

$$\left[\bar{\bf x} - t_{\alpha/2}(n-1)\frac{s_{n-1}}{\sqrt{n}}, \ \bar{\bf x} + t_{\alpha/2}(n-1)\frac{s_{n-1}}{\sqrt{n}}\right]$$

where $s_{n-1}^2 = \sum (x_i - \bar{\mathbf{x}})^2 / (n-1)$.

▶ $1 - \alpha$ confidence interval for *m* in Po(*m*)

$$\theta \in \left[\frac{\chi^2_{1-\alpha/2}(2n\bar{\mathbf{x}})}{2n}, \frac{\chi^2_{\alpha/2}(2n\bar{\mathbf{x}}+2)}{2n}\right]$$

٠

٠

▶ $1 - \alpha$ confidence interval for *a* in Exp(*a*)

$$heta \in \left[rac{2nar{\mathbf{x}}}{\chi^2_{lpha/2}(2n)}, \ rac{2nar{\mathbf{x}}}{\chi^2_{1-lpha/2}(2n)}
ight]$$

Credibility intervals:

- In the Bayessian approach the lack of knowledge of parameter value θ is described using the probability densities f(θ) (odds). Random variable Θ having the pdf f(θ) models our knowledge about θ.
- The initial knowledge is described using f^{prior}(θ) density and as the data are gathered it is updated

$$f^{\mathsf{post}}(\theta) = c L(\theta) f^{\mathsf{prior}}(\theta).$$

The pdf f^{post}(θ) summarizes our knowledge about θ. However if one value of for the parameter is needed then

$$\theta^{\text{predictive}} = \mathsf{E}[\Theta] = \int \theta f^{\text{post}}(\theta) \, d\theta.$$

If one wishes to describe the variability of θ by means of an interval then the so called credibility interval can be computed

$$[\theta_{1-\alpha/2}^{\mathsf{post}}, \ \theta_{\alpha/2}^{\mathsf{post}}]$$