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Wind Energy production:

Available Wind Power p = 0.5p,;,A, v3, p.ir air density, A, area swept by
rotor, v - hourly wind speed.

Left: 7 years data.
Right: Histogram

wind "distribution”.

1994 1996 1998 2000 2002

Estimate of possible yearly production:

1 61354
Pyr = ?O.Spa;,A, Z v? = 116678, [some units].
i=1

Before age of computers one could estimate p,, using statistics (random
variables, law of large numbers): click for details



Random variables:

Often in engineering or the natural sciences, outcomes of random
experiments are numbers associated with some physical quantities. Such
experiments, called random variables, will be denoted by capital letters,
eg, U X, Y, N, K.

The set S of possible values of a random variable is a sample space
which can be all real numbers, all integer numbers, or subsets thereof.

Example 1
For the experiment flipping a coin, let to the outcomes

“Tails" and “Heads” assign the values 0 and 1 and denote by X. One say
that X is Bernoulli distributed. What does it mean "distributed”?



Probability distribution function:

A statement of the type “X < x" for any fixed real value x, e.g.
x = —2.1 or x = 5.375, plays an important role in computation of
probabilities for statements on random variables and a function

Fx(x)=P(X <x), x€eR,

is called the probability distribution, cumulative distribution
function, or cdf for short.

Example 2
Data, Figures

The probability of any statement about the random variable X is
computable (at least in theory) when Fx(x) is known.



Probability mass function

If K takes a finite or (countable) number of values it is called discrete
random variables and the distribution function Fx(x) is a “stair” looking
function that is constant except the possible jumps. The size of a jump
at x = k, say, is equal to the probability P(K = k), denoted by py, and
called the probability-mass function.

Example 4
Pmf

1 Geometrical distribution with
s px = 0.70% - 0.30, for k =0,1,2, . ...

Left: Distribution function.
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N 008 hhﬁm Right: Probability-mass function.
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Counting variables

Geometric probability-mass function:
P(K=k)=p(1l-p)k, k=0,1,2,...

Binomial probability-mass function:

P(K = k) = py = <Z>pk(1 —p)" k. k=0,1,2,...
Poisson probability-mass function:
mk
P(K:k):e’"ﬂ, =0,1,2,...



Ladislaus Bortkiewicz

Important book published in 1898:

Das Gesetz der kleinen Zahlen

Ladislaus Bortkiewicz
(1868-1931)



Law of Small Numbers

If an experiment is carried out by n independent trials and the
probability for “success” in each trial is p, then the number of
successes K is given by the binomial distribution:

K € Bin(n, p).

If n — oo and p — 0 so that m = n- p is constant, we have
approximately that
K € Po(np).

(The approximation is satisfactory if p < 0.1 and n > 10.)

Example 6
Let p be probability that accident occurs during one

year, n be number of structures (years) then number of accidents
during one year K € Po(np), example of accident.



CDF - defining properties:

Any function F(x) satisfying the following three properties is a
distribution of some random variable:
» The distribution function Fx(x) is non-decreasing function.
> Fx(—o0) =0 while Fx(+oc0) = 1.

> Fx(x) is right continuous.

If Fx(x) is continuous then P(X = x) = 0 for all x and X is called
continuous. The derivative fx(x) = F§(x) is called probability density
function (pdf) and

Fx(x) = / " h(2)dz.

— 00

Hence any positive function that integrates to one defines a cdf.



Normal pdf- and cdf-function:
The cdf of standard normal cdf is defined through its pdf-function:

P(X < x) = &(x) = [ %ﬁ e €2 qe.

The class of normal distributed variables Y = m + o X, where

m, o > 0 are constants is extremely versatile. From a theoretical point of
view, it has many advantageous features; in addition, variability of
measurements of quantities in science and technology are often well
described by normal distributions.

) Example 9
Normalized histogram of

o weights of 750 newborn children in
o7 Malmo.

oa Solid line the normal pdf with
o0 m = 3400 g, 0 =570 g.

T N AT Is this a good model? Have girls and
boys the same weights variability?



Example: Normal cdf - ®(x)-function:

This table gives function values of ®(x),x > 0. For negative values of x,
use that ®(—x) =1 — d(x).

x 0.00 0.01

0.05 0.06 0.07 0.08

0.5000  0.5040 0.5120 05279 0.5319

05398  0.5438 0.5517 0.5675  0.5714

0.5793  0.5832 0.5910 0.6064  0.6103

0.6179  0.6217 0.6293 0.6443  0.6480

0.6554  0.6591 0.6664 0.6808  0.6844

0.6915  0.6950 0.7019 0.7157  0.7190

0.7257  0.7291 0.7357 0.7486  0.7517

0.7580  0.7611 0.7673 0.7794  0.7823 .78
07881 0.7910 0.7967 0.8078  0.8106 0.8133

0.8159  0.8186 0.8238
0.8413  0.8438 0.8485
0.8643  0.8665  0.8686 08708
0.8849 0.8869 0.8888  0.8907
0.9032  0.9049 0.9066 09082
09192  0.9207  0.9222 09236
0.9332  0.9345 09357 09370
0.9463  0.9474 09484

0.8340  0.8365 0.8389
X 0.8577  0.8599  0.8621
08770 0.8790  0.8810  0.8830
0.8062 0.8080 0.8997 0.9015
09131 09147 0.9162 0.9177
0.9279 09292  0.9306  0.9319
0.9406 09418  0.9429 0.9441
0.9515 09525 0.9535 0.9545

0.9564 0.9582 0.9608 09616 0.9625 0.9633
0.9649 0.9664 0.9686  0.9693  0.9699 0.9706
0.9719 0.9732 0.9750 09756 0.9761  0.9767
0.9778 0.9788 0.9803 09808 0.9812 0.9817
0.9826 0.9834 09846 09850 09854 09857
0.9864 0.9871 0.9881 09884 0.9887  0.9890
0.9896 0.9901 0.9909 09911 0.9913 0.9916
0.9920 0.9925 0.9931 09932  0.9934  0.9936
0.9940 0.9943 0.9948 09949  0.9951 0.9952
0.9955 0.9957 0.9961 09962 0.9963 0.9964
0.9966 0.9968 0.9971 09972 0.9973 0.9974
0.9975 0.9977 0.9979 09979  0.9980 0.9981
0.9982 0.9983 0.9984  0.9985 09985 0.9986  0.9986
0.9987 0.9988 0.9989 0.9989 09989 0.9990 0.9990
0.9991 0.9991 0.9992  0.9992 09992 0.9993 0.9993
0.9993 0.9994 0.9994  0.9994 09995 0.9995 0.9995
0.9995 0.9996 0.9996 0.9996 09996 0.9996 0.9997
0.9997 0.9997 0.9997  0.9997 09997 0.9997 0.9998
0.9998 0.9998 0.9998  0.9998 09998 0.9998 0.9998
0.9998 0.9999 0.9999  0.9999 09999 0.9999  0.9999




Classes of distributions - scale and location parameters

For a r.v. X having Fx(x) a random variable Y = aX + b has distribution
Fy(y) =P(Y <y) =P(X < (y - b)/a) = Fx((y — b)/a)

where a and b are deterministic constants (may be unknown).

If two variables X and Y have distributions satisfying the equation

Fy(y) = Fx (y - b)

a

for some constants a and b, we say that the distributions Fy and Fx
belong to the same class; a is called scale parameter and b is called
location parameter.



Standard Distributions
In this course we shall meet many classes of discrete cdf: Binomial,
Geometrical, Poisson, ...; and continuous cdf: uniform, normal
(Gaussian), log-normal, exponential, 2, Weibull, Gumbel, beta ...

Distribution

Beta distribution, Beta(a, b) flz)= FF(ESFZE) 1 -z o<z <1
Binomial distribution, Bin(n, p) P = (Z) PPA-p)"* k=0,1,...,n
First success distribution pe=p(1—p)* 1 k=1,23...
Geometric distribution pe=p(1—-pF, k=01,2...

Poisson distribution, Po(m) PE = e_mmk—r, k=0,1,2,...
Exponential distribution, Exp(a) Flz)=1—e* >0

Gamma distribution, Gamma(a, b) flx) = F}E:' @ le7b 2 >0

Gumbel distribution F(z) = c’ef(rfwa, zeR

f(l’):TC (w=m?/2% -y eR

Normal distribution, N(m, o2) Flo) =3 /) R
T z—m)/o), x€

Log-normal distribution, In X € N(m,0?) F(z) = @(MT’”) x>0

Uniform distribution, U(a, b) flx)=1/(b—a), a<z<b

Weibull distribution F(z)=1- e (%3 , x>b



Quantiles

The « quantile x,,, 0 < a < 1, is a generalization of the concepts of
median and quartiles and is defined as follows:

The quantile x,, for a random variable X is defined by the following

relations:
PX<xy)=1—-0qa, xo=F (1-a).

In some textbooks, quantiles are defined by the relation P(X < x,) = «;
then the inverse function F~(y) could be called the “quantile function”.

Example 10



Example: Finding A, i.e.

quantiles of N(0,1) cdf

x 0.00 0.02 0.03 0.06 0.07 0.08 0.09

0.5000 0.5080  0.5120 0.5239 05279  0.5319
0.5398 0.5478 05517 0.5636  0.5675  0.5714
0.5793 0.5871  0.5910 0.6026  0.6064 0.6103

0.6255  0.6293 0.6406  0.6443  0.6480

0.6628  0.6664 0.6772  0.6808  0.6844

0.6985  0.7019 0.7157  0.7190

0.7324  0.7357 0.7486  0.7517

0.7642  0.7673 0.7794  0.7823

0.7939  0.7967 0.8078  0.8106 0.8133

0.8212  0.8238 0.8340  0.8365 0.8380

0.8461  0.8485 0.8577  0.8599  0.8621

0.8686  0.8708 0.8790  0.8810 0.8830

0.8888  0.8007 0.8980  0.8097 0.9015

0.9066  0.9082 09147 09162 0.9177

09222 0.9236 09292  0.9306 0.9319

0.9357  0.9370 09418 0.9429 0.9441
0.9452 0.9474 09484 09525 0.9535 0.9545
0.9554 0.9573 09582 09616 0.9625 0.9633
0.9641 0.9656  0.9664 0.9693  0.9699 0.9706
0.9713 0.9726 09732 0.9756 0.9767
0.977: 0.9783 09788 0.9808 0.9817
0.9821 0.9830  0.9834 0.9850 0.9857
0.9861 0.9868  0.9871 0.9884 0.9800
0.9893 0.9808  0.9901 0.9911 0.9916
0.9918 0.9922  0.9925 0.9932 0.9936
0.9938 0.9941 09943 0.9949 0.9952
0.9953 0.9956  0.9957 0.9962 0.9964
0.9965 0.9967  0.9968 0.9972 0.9974
0.9974 09975 0.9976 09977  0.9977  0.9978 0.9979 0.9979 0.9980 0.9981
0.9981  0.9982  0.9982  0.9983  0.9984  0.9984 0.9985  0.9985  0.9956  0.9986
0.9987  0.9987 0.9987 09988  0.9988  0.9989 0.9989 09989 0.9990 0.9990
0.9990 0.9991 0.9991  0.9991 0.9992 0.9992  0.9992 09992 0.9993 0.9993
0.9993  0.9993 0.9994 09994 09994  0.9994 0.9994 09995 0.9995 0.9995
0.9995 0.9995 0.9996 09996  0.9996  0.9996 0.9996 09996 0.9996 0.9997
0.9997  0.9997 0.9997 09997  0.9997  0.9997 0.9997 09997 0.9997 0.9998
0.9998  0.9998 0.9998 09998  0.9998 0.9998 0.9998 09998 0.9998 0.9998
0.9998  0.9998 0.9999 09999  0.9999  0.9999 0.9999 09999 0.9999 0.9999




Independent random variables

The variables X; and X, with distributions F1(x) and Fy(x), respectively,
are independent if for all values x; and x

P(X1 <x3 and X5 < x) = Fi(x) - F2(x).

Similarly, variables X1, X5, ..., X, are independent if for all xi, x>, ..., x,

P(Xl S X1, X2 S X2y ouny Xn § Xn) = F1(X1) . F2(X2) Cee F,,(Xn).

If in addition, for all i, F;(x) = F(x) then X1, X, ..., X, are called
independent, identically distributed variables (iid variables).



Empirical probability distribution

> Suppose experiment was repeated n times rending in a sequence of
X values, x1,...,x,. The fraction F,(x) of the observations
satisfying the condition “x; < x”
number of x; < x, i =1

Falx) = e

is called the empirical cumulative distribution function (ecdf).

» The Glivenko—Cantelli Theorem states that the maximal distance
between F,(x) and Fx(x) tends to zero when n increases without
bounds, viz. max, |Fx(x) — Fp(x)| — 0 as n — .

» Assuming that Fx(x) = Fn(x), means that the uncertainty in the
future (yet unknown) value of X is model by means of drawing a lot
from an urn, where lots contain only the observed values x;. By
Glivenko-Cantelli th. this is a good model when n is large.



Example: lifetimes for ball bearings

Data:
17.88, 28.92, 33.00, 41.52, 42.12, 45.60, 48.48,

51.84, 51.96, 54.12, 55,56, 67.80, ©68.64, 68.88,
84.12, 93.12, 98.64, 105.12, 105.84, 127.92, 128.04,
173.40.

ECDF of ball bearings life time.

0 20 40 60 80 100 120 140 160 180
Millions of cycles to fatigue

Example wind speed data



In this lecture we met following concepts:

v

Random variables (rv).

v

Probability distribution (cdf), mass function (pmf), density
(pdf).

Law of small numbers.

Quantiles.

Empirical cdf.

vV v v Vv

You should read how to generate uniformly distributed
random numbers.

v

How to generate non-uniformly distributed random numbers
by just transforming uniform random numbers.

Examples in this lecture " click”



