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In the project description we sketch the analysis of the problem we expect you to do. (Obviously

you are welcome to do more.) To pass the project a short report should be written and handed

in to the project supervisor. In addition the group should present their results in class. The

presentation should take about 15 minutes. Please include a short introduction which will

facilitate for other students to understand the results of the project. (Do not assume that the

audience knows the subject.)

1 Introduction - Fatigue of metals

Suppose that a metal structure can endure a static load of S. However, if the structure breaks

down subject to a cyclic load having a peak value noticeably below S, then the structure is said

to su�er from metal fatigue. Particularly, cyclic loads seem to accelerate crack initiation and

crack growth. The fatigue crack propagation is a very complicated process. In the initiation

phase, most cracks stop to grow while some collapse and create longer cracks that grow with

increasing speed. Initiation of cracks usually takes place at the surface at locations where the

stress concentration is high.

Among the more spectacular accidents involving fracture due to fatigue are the accidents

with the �rst jet aeroplane in regular tra�c (from May 1952), the Comet aeroplane, built by

De Havilland. Three of these disintegrated in mid air, and all aeroplanes of this type were

withdrawn from tra�c. More facts about these crashes are found at the Internet1.

In this project you will investigate how a fatigue crack grows under laboratory conditions. You

will employ statistical tools called linear regression and bootstrap.

2 Fatigue and Fracture Mechanics � Paris' Law

Let consider how an existing crack will grow under constant-amplitude load, i.e. a stress

s(t) = S · cos(ω t). The important quantity is N(t) = ω
2π t which is the number of stress

oscillations in time period t. Denote by A(t) the crack length at time t. It is well known that

the crack length A(t) depends on time only through number of stress oscillations. In fracture

mechanics the following relation between A and N has been established from experiments:

dA
dN

= c (A)k (1)

where c and k are constants, speci�c to the material, geometry of specimen, and type of crack.

The constants c and k are unknown and one wishes to estimate them in laboratory experiments.

In 1979, Virkler et al. performed crack-growth measurements on 2024-T3 aluminium-alloy

specimens. In total 68 specimens was tested. Each specimen had a 9 mm long initial crack

before it was loaded by sinusoidal stress with the same range S. For each specimen one

had measured the number of oscillations N as a function of crack length A, giving a matrix

1http://www.geocities.com/Heartland/Ridge/1747/comet.htm
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(Ai, N(Ai)). 2 Because of this particularity of the data we choose to use an alternative

formulation of the Paris law:

dN
dA

= C (A)β, (2)

obviously C = 1/c while β = −k. Virkler data will be used to validate the model (2).

2.1 Virkler Data

Virkler had measured the number of oscillations N it took for a crack to grow speci�c length.

The data is saved in the �le Virkler. The �rst column contain values of A while the remaining

68 columns contain number of cycles N it took for a crack in respective specimens to reach

the length A (given in the �rst column). The easiest way to understand the data is to load it

and plot.

clear

v = load('virkler.dat');

v=v(1:136,:);

figure(1)

plot(v(:,1),v(:,2:end))

We have plotted only the �rst 136 rows because there was a shift in sampling of the crack

length during the experiment. Simply above the threshold cracks grow very fast making it

di�cult to accurately measure the relation N(A). We propose to analyze the model in this

region.

In order to check whether the Virkler data con�rms the relation (2) let plot dN
dA as a function

of crack length A. This can be done using the following Matlab script

Ai=(v(1:end-1,1)+v(2:end,1))/2;

dA=(Ai(2)-Ai(1));

i=7;

dNdA=diff(v(:,i+1))./dA;

figure(2);

plot(Ai,dNdA)

Two observations are immediate; �rstly the data seems to support model Eq. (2); secondly

the variability (noisiness) of the measurements is getting smaller with crack length. Since it is

easier to �t a linear model and it is bene�cial to have a similar noise level in the whole range

of A, we propose to take the logarithm of both sides in Eq. (2) then

ln
dN
dA

= β · lnA+ lnC. (3)

This is a linear relation! Let check if the relation holds for the measured data too

figure(3)

plot(log(Ai),log(dNdA))

Judging from the plot, there seems to be linear relation between ln(A) and ln(dN/dA). How-
ever, there is also randomness occurring, probably due to variability of material properties

along the crack path and measurements errors. We want to model this with tools from prob-

ability.

2More often one is measuring crack length A as a function of N .
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We postulate that the relation (3) is valid for the expected values, viz.

E
[
ln

dA
dN

]
= β · lnA+ lnC.

Such type of a model is called a linear regression.

2.1.1 Linear regression

Denote by Xi the values of logarithms ln(dN/dA) when crack reaches the length Ai. Here Ai
are known values (measurement errors can be neglected) while Xi are given by

Xi = β · lnAi + α+ εi, (4)

where εi are iid N(0, σ2) distributed random variables. The variance σ2 is assumed to be

constant but unknown. The problem is to estimate parameters β, lnC and σ2. We will used

the data (xi, lnAi), i = 1, . . . , n = 136, plotted on Figure 3, to estimate the parameters.3

2.2 Estimates of Parameters

To estimate the parameters α and β in the model given in Eq. (4) one can use the Maximum

Likelihood method. In Statistics Toolbox in Matlab, there is a routine regress which performs

least-squares estimation. (For Gaussian errors εi LS and ML methods are equivalent.) Type

help regress.

We wish to write the relation (4) in a matrix form. Hence let b be a column vector of parameters

and XX be the so called design matrix, de�ning the model then

x = XX ∗ b+ ε.

The following Matlab script can be used to �nd b:

t=log(Ai); x=log(dNdA);

XX=[ones(length(t),1) t];

b = regress(x,XX);

The purpose of the part ones(length(t),1) in the call is to handle the so-called intercept

(the constant term). The parameter β is given by b(2) while α is found as b(1). From the

help text to the routine (help regress), you �nd that con�dence intervals for the estimated

parameters may be given as output if requested.

Plot the regression line in the same �gure as the original data:

xest = b(1) + b(2)*t;

% xest = XX*b;

figure(3), hold on

plot(log(Ai),xest,'r.-')

2.3 Check of Residuals

In the model it is assumed that the errors εi, called also residuals, belonged to a Gaussian

distribution; let us therefore examine the residuals. Create a vector res of residuals:

res = xest - log(dNdA);

3 The variable ti = ln Ai is often called the independent variable, or covariate, while xi is called the dependent
variable.
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Plot �rst the residuals in a probability paper.

figure(4)

wnormplot(res)

Assuming normality, we can estimate the variance σ2 of εi (and check if zero mean):

par7=wnormfit(res)

figure(3)

plot(log(Ai),xest+wnormrnd(par7(1),par7(2),length(xest),1),'g.')

(a) Does the Paris law holds for the crack growth in the specimen?

(a) Does the plots contradict the regression model (4)?

We expect answers "yes" and "no" and conclude that the Paris' law models well the results of

Virklers experiment at least for the 7th specimen.

Paris law is an empirical equation which can be solved explicitly. Check that with A0 = 9 and

β 6= −1

N(A) =
1

β + 1
exp(α)

(
Aβ+1 −Aβ+1

0

)
.

Now the di�erence equation used to establish the regression gives the following formula for

N(Ai)

N(Ai) = exp(α)
i∑

j=1

Aβj ∆A.

The deterministic N(A) function derived from Paris equation can be compared with the ob-

served N(A). This is done in the following plot

figure(5)

plot(Ai,(Ai.^(b(2)+1)-9^(b(2)+1))*exp(b(1))/(b(2)+1),'r.')

hold on

plot(Ai,cumsum(exp(xest)*dA),'r')

plot(v(:,1),v(:,i))

Agreement seems to be very good. Is this good agreement accidental? One way of checking

this is to study the variability of a stochastic solution to Paris equation when the residuals εi
are included, viz.

N(Ai) = exp(α)
i∑

j=1

Aβj exp(εj)∆A. (5)

Let now simulate three realisation of the random N(A) processes

Nx=length(xest);

plot(Ai,cumsum(exp(xest+wnormrnd(par7(1),par7(2),Nx,1))*dA),'g')

plot(Ai,cumsum(exp(xest+wnormrnd(par7(1),par7(2),Nx,1))*dA),'g')

plot(Ai,cumsum(exp(xest+wnormrnd(par7(1),par7(2),Nx,1))*dA),'g')

The plot illustrates for us that the di�erence between the measured N(A) and the one derived

from the deterministic Paris equation can be quit large. Conclusion.



Project 5, MVE240 v

2.4 Checking the regression model for other specimens

Next we turn to investigate whether the model �t data for other specimens. We have shown

above that the di�erence between the measured process N(A) and the computed from the

deterministic Pars law could be large. Hence we wish to test whether the data does not

contradict in obvious way the model (5). This is done by simulating 100 realizations of (5)

which will describe the variability of N(A) as predicted by (5). If the observed N(A) lies in

the band we have no reasons to reject the model.

par=[];

for i=1:68;

dNdA=diff(v(:,i+1))./dA;

b = regress(log(dNdA),[ones(length(Ai),1) log(Ai)]);

xest = b(1) + b(2)*log(Ai);

res = xest - log(dNdA);

ss=var(res);

par=[par [b' ss]];

figure(6),clf

plot(Ai,cumsum(exp(xest)*dA),'r')

hold on

plot(v(:,1),v(:,i+1),'k')

pause

for j=1:100

vrnd=cumsum(exp(xest+wnormrnd(0,ss,length(xest),1))*dA);

plot(Ai,vrnd,'g')

end

plot(Ai,cumsum(exp(xest)*dA),'r.')

plot(v(:,1),v(:,i+1),'.')

axis([5 40 0 3.2*10^5])

pause

end

Do the data contradict the model? (Motivate the answer.)

Does the variability of parameters α, β, σ2 depend on estimation errors or there are other types

of variabilities that a�ect the results? For example there can be "weaker" and "stronger"

components (due to the variability of the material properties along the crack); the range S can

vary between experiments. These suggest that the randomized version of Paris law is needed

to describe cracks growth.

Demonstrate that one should model α and β as random variables, i.e. variability of parameters

can not be explained by estimation errors. A very simple test can be done by computing

a very wide con�dence interval, 99.99% con�dence level, for parameters estimated from a

specimen chosen at random. If there are specimens having parameters lying outside the interval

it contradicts the assumption of deterministic parameters α, β. Please do it using program

regress.

2.5 Reliability problem:

Finally, use parametric bootstrap to estimate the 0.999-quantile of the specimen strength, e.g.

the number of oscillations N needed for cracks to become 36 mm long.

However, �rst we shall use bootstrap to check if the proposed model seems to reproduce

variability in the observed values of N well.
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figure(7),clf

hold on

N=v(end,2:end);

Ns=68;

for j=1:100

Asim_boot=[];

for i=1:Ns

n = ceil(68.*rand(1,1));

xest = par(n,1) + par(n,2)*log(Ai);

vrnd=cumsum(exp(xest+wnormrnd(0,par(n,3),length(xest),1))*dA);

Asim_boot=[Asim_boot; vrnd(end)];

end

empdistr(Asim_boot,'k')

end

empdistr(N,'r*')

What are your conclusions?

Finally use the bootstrap method to estimate the 0.999-quantile of N .
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