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Probability, Statistics and Risk MVE300

Computer exercise 4
Poisson Regression

When dealing with two or more variables, the functional relation between the variables is often of in-
terest. For count data, one model that is frequently used is the Poisson regression model and applications
are found in most sciences: technology, medicine etc. The Poisson regression model is also implemented
in many packages for statistical analysis of data.

In this computer exercise you will learn more about:

(1) The Poisson regression model and how to estimate the model parameters

(2) Model selection, i.e. the number of explanatory variables to use

1 Preparatory exercises

1. Read chapter 7.1-7.3 in the textbook.

2. Try to explain the difference between linear regression and Poisson regression.

2 Road accident data

The Swedish Road Administration is the national authority that has the overall responsibility for the
entire road transport system. One main issue is road safetybility and continuous work to improve road
safety is performed. From their internet site http://www.trafikverket.se; it is possible to obtain a number
of different statistics about road accidents1. We will in this exercise use traffic accident data from years
1950-2010. The data is used to fit a Poisson regression model to the number of people perished in traffic
accidents, cf. Example 7.16 in the textbook. The estimated model is then used to predict the expected
number of perished year 2016.

Start by download statistics about the number of people killed in road accidents reported by the police
from the year 1950 to 2010. The data can be obtained from the mentioned website following the link:
1950-RoadData. However, the data obtained this way are in the format of an Excell spreadsheet that
include also some description at the top. We modified this file to get it into more manageable format and
now it is in labfiles named ’arsdata_1950.xls’

Import the data to the Matlab workspace with the command

>> data = xlsread(’arsdata_1950.xls’);
1Another good source for all kinds of statistics about transport and communications is the Swedish Institute For Transport

and Communications Analysis, http://www.sika-institute.se/.

http://www.trafikverket.se
http://www.trafikverket.se/Privat/Trafiksakerhet/Olycksstatistik/Vag/Nationell-statistik/Arsdata-fran-1950/
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Figure 1: The number of people killed per year in road accidents in Sweden from year 1950 to year 2010.
(Source: The Swedish Road Administration.)

The variable data now consists of 9 columns but we are only interested in columns {1, 2, 5, 6}, i.e. {year,
number of people killed, number of cars, amount of sold petrol}. We store the data in a structure array

>> traffic = struct(’year’,data(:,1),’killed’,data(:,2),’cars’,data(:,5),...
’petrol’,data(:,6));

Plot the number of people killed each year

>> plot(traffic.year, traffic.killed, ’o’)

Try also plotting the number of people killed vs. number of cars and the petrol consumption. Do you
see any connections?

From the plot it can be seen that the trend of increasing number of people killed is broken around
year 1965. And from year 1970 the number starts to decrease. Some natural questions arises. Why
did the number of people killed increase in years 1950-1965? What was the reason for the brake of the
increasing trend? (Hint: right-side driving (1967), front seat-belts in new cars (1969), mandatory use of
front seat-belts (1975)).
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3 The Poisson regression model

Lets say we have a sequence of count data, ni, i = 1, . . . , k , for some event, i.e. the number of perished
in traffic accidents in a year. This count data is assumed to be observations from random variables
Ni ∈ Po(µi), (called responses or dependent variables) with mean value µi = µi(xi1, . . . , xip). The
variables, xi1, . . . , xip, are called explanatory variables2 and are assumed to measure factors that influence
the count data.

We restrict µi to be a log-linear function3,

µi = exp(β0 + β1xi1 + . . .+ βpxip) (1)

And thus the probability that Ni = n is,

P(Ni = n) =
e−µi(µi)

n

n!
=
e−e

β0+β1xi1+...+βpxip
(eβ0+β1xi1+...+βpxip)n

n!
, n = 0, 1, 2, . . . . (2)

3.1 Estimating model parameters β0, . . . , βp

To simplify the notation we introduce xi0 = 1 and can now write (1) as,

E[Ni] = µi = exp

 p∑
j=0

βjxij

 , (3)

where Ni ∈ Po(µi) for i = 1, . . . , k.
The likelihood function is calculated as,

L(β) =

k∏
i=1

P(Ni = ni) =

k∏
i=1

µnii
ni!

e−µi . (4)

where µi = µi(βp) is a function of βp = (β0, . . . , βp). The ML-estimates β∗p = (β∗0 , . . . , β
∗
p) are the values

of β that maximize the likelihood function L(β). Often it is easier to maximize the log-likelihood function,

l(β) = −
k∑
i=1

log(ni!) +

k∑
i=1

ni log(µi)−
k∑
i=1

µi. (5)

By setting the first order derivates of the log-likelihood equal to zero, we get a system of (p+1) non-linear
equations in βj ,

∂l(β)

∂βj
=

k∑
i=1

∂µi
∂βj

(
ni
µi
− 1

)
=

k∑
i=1

(ni − µi)xij = 0, j = 0, . . . , p. (6)

Usually, the equation system must be solved with some numerical method, e.g. the Newton-Raphson
algorithm, cf. Section 7.3.3. in the textbook. This is also the method implemented in the function
poiss_regress, which was written for the purpose of this lab and can be found in labfiles. Use the
command >> type poiss_regress to see the code.

Poisson regression model belongs to a class of models called generalized linear models. In a generalized
linear model (GLM), the mean of the response, µ, is modeled as a monotonic (nonlinear) transformation

2Several other names exist in the literature: independent variables, regressor variables, predictor variables.
3Sometimes the model incorporates an extra term ti: µi = ti exp(β0 + β1xi1 + . . .+ β2xip).
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of a linear function of the explanatory variables, g(β0+β1x1+β2x2...). The inverse of the transformation
function g is called the canonical link function. In Poisson regression this function is the log function, but
in other GLM’s different link functions are used, see doc glmfit for a list of supported link functions in
the Matlab function glmfit4. Also, the response may take different distributions, such as the normal or
the binomial distribution. Below, we will use related function glmval with the logarithmic link function
to make predictions from the fitted model, see the code below.

4 Poisson regression of traffic data

We will now try to fit the Poisson regression model to the traffic data of the number of people killed in
road accidents. Above, we could see that there was a break in the trend of increasing number people
killed around year 1965-1975, mainly because of the improvement in car safety due to the use of safety
belts. Because of this it seems reasonable to fit our model to data starting from year 1975.

>> traffic = struct(’year’,data(26:end,1),’killed’,data(26:end,2),...
’cars’,data(26:end,5),’petrol’,data(26:end,6));

Question 1: Which are the explanatory variables? And which is the response?

Redraw the plot from above for the reduced data set

>> plot(traffic.year,traffic.killed,’o’)
>> figure(1), hold on

We start the analysis with one explanatory variable, traffic.year. Note usage of the prediction
routine for the generalized linear models glmval

>> X1 = [traffic.year-mean(traffic.year)];
>> n = traffic.killed;
>> beta1 = poiss_regress(X1,n,1e-6);
>> my_fit = glmval(beta1, X1,’log’);
>> plot(traffic.year, my_fit, ’b-’)

Question 2: What is your estimate of β? Convince yourself that this is the solution to (6). You
can utilize the following code for this purpose:

>> X0=ones(size(X1));
>> X=[X0 , X1];
>> mu=exp(X*beta1);
>> X’*(n-mu)

Does it appear to be the solution? Judging from the plot, is this model sufficient to describe the
number of people killed in traffic accidents?

Although this simple model seems to capture the overall trend, adding further explanatory variables
may improve the fit. Thus, we try adding the number of cars as a variable in our model.

4glmfit uses a method called weighted least squares to compute the β estimates.
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>> X2 = [traffic.year-mean(traffic.year), traffic.cars-mean(traffic.cars)];
>> beta2 = poiss_regress(X2,n,1e-6);
>> my_fit = glmval(beta2, X2,’log’);
>> plot(traffic.year, my_fit, ’g-’)

Question 3: Have your estimates β∗0 and β∗1 changed? Does accounting for the number of cars
improve the fit?

It seems reasonable also to add the quantity of sold petrol as this would reflect the total mileage of all
cars5.

>> X3 = [traffic.year-mean(traffic.year), traffic.cars-mean(traffic.cars),...
traffic.petrol-mean(traffic.petrol)];

>> beta3 = poiss_regress(X3,n,1e-6);
>> my_fit = glmval(beta3, X3,’log’);
>> plot(traffic.year, my_fit, ’r-’)

Question 4: Have your estimates of β changed now? Use the command format long to display
more digits. Which model do you choose?

4.1 Model selection - Deviance

It is not always easy to decide, just by looking at the plot, which model to choose. Even though adding
more variables improves the fit, it also increases the uncertainty of the estimates. One method to choose
complexity of the model is to use the deviance and a hypothesis test.

Let β∗p = {β∗0 , β∗1 , . . . , β∗p} be the ML-estimates of the model parameters {β0, β1, . . . , βp} of the full
model with p explanatory variables and β∗q the estimates of a simpler model where only q (q < p) of the
explanatory variables have been used. Then for large k, and under suitable regularity conditions, the
deviance

DEV = 2 · (l(β∗p)− l((β∗q))) (7)

is approximately χ2(p− q) distributed if the less complex model is true. Thus, it is possible to test if the
simpler model can be rejected compared to the full model.

Question 5: Use chi2inv to get the quantiles of the χ2 distribution. Consider 5% significance
level for your test.

The deviance for model 3 compared to model 2 is calculated as

>> DEV2 = 2*traffic.killed’*([X0,X3]*beta3-[X0,X2]*beta2)
5Assuming that the mean fuel consumption of a car has been constant over the years - a 1970 year model of a Volvo used

about 10l per 100km which is approximately the same as for the 2000 year model. Of course, the year 2000 model has more
than twice the horsepower.
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Question 5: Is the improvement with model 3 significant compared to model 2? Repeat the test
for model 2 against model 1 and also model 3 against model 1? Which model do you choose? Do you
think that there was a sufficient number of explanatory variables used to explain the traffic deaths?
Why?

5 Prediction

Now we want to use our model to predict the expected number of perished in traffic accidents six years
from now, i.e. year 2016 . In order to do this we first must have an estimate of the number of cars that
year. Start by plotting the number of cars vs. year,

>> figure(2)
>> plot(traffic.year, traffic.cars, ’o’)
>> hold on

We will here use a simple linear model for the number of cars, yi, year xi

yi = β0 + β1 · xi + εi (8)

where the errors, εi ∈ N(0, (σε)
2), are assumed to be independent and identically distributed. This is

called a linear regression model. It is possible to estimate the parameters with the maximum likelihood
method similar as for the Poisson regression model above.

Question 6: What is the likelihood function? Write it down.

In Matlab, the function regress computes the least-squares (LS) estimates of the linear regression
model. In the case of εi being normally distributed, the LS method is equivalent to the ML method with
exactly the same estimates.

>> phat = regress(traffic.cars,[ones(length(traffic.cars),1) [1975:2005]’])
>> plot(1975:2016, phat(1)+phat(2)*[1975:2016],’r’)
>> cars_2016=phat(1)+phat(2)*2016;

Evaluate the fit by looking at the residuals.

>> res = traffic.cars-(phat(1)+phat(2)*traffic.year);
>> figure(3), plot(traffic.year,res,’o’)
>> figure(4), normplot(res)

Question 7: Do the residuals conform to the requirements of the model errors εi?

Using the following code provide with prediction of petrol consumption for 2016.
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>> phat = regress(traffic.petrol,[X0 [1975:2010]’ ([1975:2010].^2)’])
>> plot(1975:2016, phat(1)+phat(2)*[1975:2016]+phat(3)*([1975:2016].^2),’r’)
>> petrol_2016=phat(1)+phat(2)*2016+phat(3)*2016^2;

Notice that this time quadratic model had to be fit to the data.

Question 8: Are you satisfied with the obtained fits for the petrol and the number of cars?

However, for our purpose these rough estimates are sufficient. The expected number of perished can
now be predicted using (1),

>>x=[1 2016-mean(traffic.year) cars_2016-mean(traffic.cars) petrol_2016-mean(traffic.petrol)]’
>>my_2016=exp(beta3’*x) %----- Model 3 -----

Question 9:
Is the prediction reasonable? Comment.
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