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Computer exercise 5
System Reliability

1 Preparatory exercises

1. Read the instructions for the computer exercise and chapter 8-8.1 in the textbook.

2. On page 201 in the textbook the distribution for the minimum of n independent variabels,X1, . . . , Xn,
is computed.

Question 1: Give the distribution for the maximum, i.e. compute P(max(X1, . . . , Xn) ≤ z).

3. Solve exercise 8.8 (without looking at the solution!). Also, give the failure function for this example.

4. Show that P(S ≤ R) =
∫∞
−∞ FS(r)fR(r) dr.

2 System Reliability

The reliability of an engineering system1 is often defined as the probability that the system will function
as intended. We will also refer to the opposite concept, namely the failure probability Pf (f stands for
failure), which is the probability that the system will not function as intended. The level of performance
of a system will obviously depend on the properties of the system.

Assume that all interesting properties of an engineering system are described by a set of parameters
x1, x2, . . . , xn. We want the system to endure a set of loads of our choice2 (the system might be subjected
to more than one load). The magnitudes of these loads — let us denote them y1, y2, . . . , ym — must
however be limited, due to engineering imperfection, cost limits, time limits, and the like: we understand
that there are combinations of y1, y2, . . . , ym and x1, x2, . . . , xn where the system capacity is exceeded
and where the system will inevitably break down. We formalise this

The system functions as intended ⇔ h(y1; . . . ; ym;x1; . . . ;xn) > 0
The system does not function as intended ⇔ h(y1; . . . ; ym;x1; . . . ;xn) < 0

1e.g. a construction, a vehicle, a production line, a multi-article stock-room logistic system, a computer network, a nuclear
power-plant, a dam, a communication satellite, or a finance portfolio.

2e.g. the construction must bear a certain amount of wind load or weight; the vehicle must cover a satisfactory distance
before its engine starts malfunctioning; the production line must produce goods continuously for at least a week (say) to be
profitable; the stock-room logistic system must deliver at least 99 % (say) of the goods on order on time and to the right
orderer; etc.
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The function h is called the failure function (performance function, state function). If the parameters and
the applied “loads” are marred by randomness, we instead treat them as random variables Y1, Y2, . . . , Ym
and X1, X2, . . . , Xn. In terms hereof, we can now write the failure probability Pf as

Pf = P(h(Y1; . . . ;Ym;X1; . . . ;Xn) < 0)

3In this computer exercise, our goal is to calculate Pf . The function h will always be given, as will the
distribution functions of Y1, . . . , Ym and X1, . . . , Xn. First we will obtain Pf from numerical integration
and simulations, then from an explicit expression and from simulations, and eventually from simulations
only. No real-world data today!

3 A standard example

Consider a construction of some kind. A load denoted S has the distribution function

FS(x) = exp(−e−(x−bS)/aS )

where bS = 55 and aS = 2, 5 and the construction has a strength (resistance) R with distribution

FR(x) =

{
1− exp(−((x− bR)/aR)cR), x > bR
0, x ≤ bR

where bR = 70, aR = 5, and cR = 2.

Question 2: Identify names of the distributions used to model S and R?

Assume that load and strength are independent. In this case, the failure function h is simple:

h(R;S) = R− S

We will first determine the probability of failure, Pf = P(h(R;S) < 0) = P(R − S < 0) = P(S > R). It
can be shown that Pf can be written as

Pf = P(S > R) = 1− P(S ≤ R) = 1−
∫ ∞
−∞

FS(r)fR(r) dr =

= 1−
∫ ∞
bR

exp(−e−(r−bS)/aS )
cR
aR

(
r − bR
aR

)cR−1
e−((r−bR)/aR)cR dr

This horrible integral cannot be computed analytically. There is in Matlab, however, a simple numerical
integration routine, trapz, using the trapezium rule. To use it, one must define the integrand on a grid4:

>> aS=2.5; bS=55; aR=5; bR=70; cR=2; % cR>=1
>> r=bR:0.01:150;
>> integrand=exp(-exp(-(r-bS)/aS)).*(cR/aR).*((r-bR)/aR).^(cR-1).*exp(-((r-bR)/aR).^cR);

Iit is a good rule to plot the integrand before performing a numerical integration.
3The random variable Z = h(Y1; . . . ;Ym;X1; . . . ;Xn) is sometimes referred to as the safety margin.
4Here we have used that cR = 2 ≥ 1.
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>> plot(r,integrand), grid on

From the plot it seems that 150 will do as an upper truncation limit; less would also have been sufficient.
Now, let us calculate Pf by means of trapz:

>> Pf=1-trapz(r,integrand)

Question 3: Report the computed failure probability, Pf .

Simulation of Pf

Above you probably recognized the Gumbel distribution of S and the Weibull distribution of R. Since we
know the parameters aS , bS , aR, bR, and cR, we can simulate S and R (and hence h(S;R)) from these
distributions. Simulating many times, N = 200 000 say, we can estimate Pf frequentistically:

P̂f =
number of simulations (among the N simulations) where h(S;R) < 0

N

In Matlab5:

>> N=200000;
>> S=gumbrnd(aS,bS,1,N);
>> R=bR+wblrnd(aR,cR,1,N);
>> h=R-S;
>> Pfhat=sum(h<0)/N

Question 4: Do you understand what we did here? Compare with the value obtained from the
numerical integration above! Repeat the simulation a couple of times to get a feeling for how stable
the estimate is. Why is it not that clever to choose, for example, N = 500 (N=500)?

4 Travel times
6A limousine operates from an airport, goes to town I, then to town II, and then returns to the airport as
shown in Figure 1. Because of varied traffic conditions, the travel time required in each leg of the journey
is random, with the following statistics:

Travel time Mean Standard deviation
T1 40 min 10 min
T2 15 min 5 min
T3 50 min 10 min

5Remember the routines rand, randn, wblrnd, gumbrnd, etc. from Computer Exercise 1 and 2.The function gumbrnd is
in labfiles - it is our own function that is not available in the general Matlab package, see also comments in Computer
Exercise 2.

6This example is taken from Ang, Alfredo H S – Tang, Wilson H: Probability Concepts in Engineering Planning and
Design. – Volume II: Decision, Risk, and Reliability. — New York: John Wiley, 1984. — ISBN 0-471-03200-X.
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We assume that the traffic conditions over the three legs of the journey can be considered independent (may
this be realistic?). The scheduled time for each round trip around the loop is two hours (2 h = 120 min).
Determine the probability that a round trip will not be completed on schedule.

Figure 1: Travel-times problem

The failure function is given by

h(T1, T2, T3) = 120 min− (T1 + T2 + T3).

Question 5: Assume that T1, T2 and T3 are normally distributed. Hence, the probability of failure
can be calculated explicitly. Write down the distribution of T1 + T2 + T3.

From this it follows that

Pf = P(h(T1, T2, T3) < 0) = P(T1 + T2 + T3 > 120 min) =

= 1− P(T1 + T2 + T3 ≤ 120 min) = 1− Φ

(
120 min− 105 min

15 min

)
= 1− Φ(1)

This is calculated in Matlab by

>> Pf=1-normcdf(1)

Question 6: What is the probability of the failure?

Simulation of Pf

Similarly as in the previous example, we can estimate Pf by means of simulations.
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>> N=10000;
>> T1=40+10*randn(1,N);
>> T2=15+5*randn(1,N);
>> T3=50+10*randn(1,N);
>> h=120-(T1+T2+T3);
>> Pfhat=sum(h<0)/N

Question 7: Repeat the simulations a couple of time and report the obtain values. Are the
similar to the one obtained above by theoretical considerations.

5 Spillway capacity

We will now study a civil-engineering problem: the capacity of spillway gates in dam constructions. This
time we will rely on simulations only. We begin with an example: the Folsom Dam in California and what
happened to it a couple of years ago. Thereafter we will present a model for the discharge capacity of a
spillway of a certain kind, and a failure function will be presented. From assumed distributions we will
then simulate in order to estimate the probability that the spillway capacity will be exceeded.

The Folsom Dam

The Folsom Dam in California is a concrete gravity structure on the American River. The dam has a
structural height of 340 ft. The dam crest is at elevation 481 ft with length of 26 670 ft, and width of
36 ft. The maximum base width is 270 ft.

Normally, when a reservoir becomes too full – like after a heavy rainstorm – engineers open spillway
gates, which allow the excess water to drain out of the reservoir at a controlled rate of speed. When these
gates open suddenly and engineers lose the ability to control the flow, disaster can result.

On the 17th of July 1995, spillway gate No 3 of the Folsom Dam suffered a partial failure (Figure 2),
which allowed an uncontrolled maximum flow of approximately 40 000 ft3/s to pass the dam. Nearly 40 %
of Folsom Lake drained out past the broken gate before it could be repaired. Fortunately, this release was
well below the flow capacity of the river downstream from the dam, and there was no flooding outside the
embankments7.

A model, and simulating from it
8Insufficient spillway capacity to carry the inflow water during an extreme flood is obviously a major cause
of dam failure. For a spillway of a certain kind, the discharge Qc is given by

Qc = KCLH3/2

Here
C=the discharge coefficient
L=effective length of spillway
H=head (maximum height) of water crest at the spillway (effects of velocity of approach are included)
K=correction for imperfections in the empirical formula
7See http://www.pbs.org/wgbh/buildingbig/wonder/structure/folsom.html.
8This example is taken from Ang, Alfredo H S – Tang, Wilson H: Probability Concepts in Engineering Planning and

Design. – Volume II: Decision, Risk, and Reliability. — New York: John Wiley, 1984. — ISBN 0-471-03200-X.
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Figure 2: Failure of a spillway

The inflow rate at the spillway can be modelled by

QL = RQi

where Qi is the peak flow upstream to the reservoir and R is the attenuation factor to account for the
volume effect of the reservoir. Insufficient spillway capacity is per definition at hand when

Qc < QL.

Assume that K = 1, 0 is deterministic, and suppose that the remaining variables have the following
statistics:

Mean Standard deviation Distribution
C 3,85 0,27 Normal
L 93,4 5,6 Normal
H 12,0 0,72 Normal
R 0,7 0,1 Normal
Qi 9, 1 · 103 3, 2 · 103 Gumbel

The random variables C, L, H, R, and Qi are considered independent.

Question 8: Write down the failure function h(C;L;H;R;Qi) for the system.

As usual, let us estimate Pf from simulations in Matlab:

>> K=1.0;
>> EC=3.85; DC=0.27;
>> EL=93.4; DL=5.6;
>> EH=12.0; DH=0.72;
>> ER=0.7; DR=0.1;
>> EQi=9.1e3; DQi=3.2e3;
>> aQi=sqrt(6)*DQi/pi, bQi=EQi-0.57721566*aQi
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Question 9: Can you explain the last line of the above code?

>> N=2000; % for example
>> C=EC+DC*randn(1,N);
>> L=EL+DL*randn(1,N);
>> H=EH+DH*randn(1,N);
>> R=ER+DR*randn(1,N);
>> Qi=wgumbrnd(aQi,bQi,[],1,N);
>> h=K*C.*L.*(H.^(3/2))-R.*Qi;
>> Pfhat=sum(h<0)/N

Repeat this a couple of times as usual. Plot the failure function h between the sets of simulations:

plot(1:N,h,’.’), grid on

Question 10: Report simulated probabilities of failure. If the model represent a situation after
each heavy rain, would you find the probability of failure acceptable?

6 MOSFET

A depletion-mode MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) is a three-terminal elec-
tronic device. When an n-channel MOSFET is connected like this:

then it has the following voltage-current characteristic.

I =


A · VTR

2; U > VTR (Constant current region)
= A · (2VTRU − U2); 0 < U < VTR (Triode region)
= undefined?; U < 0
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Here U is the applied voltage9, VTR is a threshold voltage (always positive for n-channel MOSFETs), and
A is the conductance parameter.

When current flows into the positive terminal of a passive device, electrical power is dissipated in the
device as heat. This electrical power P is equal to the product of the port voltage and port current. For a
multiport device, the total electrical power input is given by the sum of input power taken over all ports.
The dissipated energy will increase the temperature of the device, which affects the properties of it. Every
device has a maximum allowable operating temperature limit that must not be exceeded. In other words:
there is a maximum electrical power limit Pmax. In our case,

UI < Pmax

if the MOSFET is to work well. Assume that U , VTR, and A are independent random variables:
U Normal with mean 10 V and standard deviation 2 V
A Log-normal with median 1 mA/V2 and σ = 0, 2
VTR Uniform between 3 V and 5 V

and that Pmax = 300 mW.

>> Pmax=300e-3;
>> N=20000;
>> EU=10; DU=2;
>> medianA=1e-3; sigma=0.2;
>> aVTR=3; bVTR=5;
>> U=EU+DU*randn(1,N);
>> A=medianA*exp(sigma*randn(1,N));
>> VTR=aVTR+(bVTR-aVTR)*rand(1,N);
>> I=zeros(1,N);
>> index1=find(U>=VTR);
>> index2=find(U<VTR);
>> I(index1)=A(index1).*VTR(index1).^2; % Constant current region
>> I(index2)=A(index2).*(2*VTR(index2).*U(index2)-U(index2).^2); % Triode region
>> h=Pmax-U.*I;
>> Pfhat=sum(h<0)/N

Question 11: Report simulated probabilities of failure (do few repetitions).

Question 12: Is P(U < 0) negligible? If U < 0 was not negligible, it is bad for the MOSFET, so
let us consider this case to be a failure. Write down a failure function h(Pmax;U ;A;VTR) with this
extra condition.

9i.e. the drain-source voltage
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