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ML estimates for typical models:
Distribution ML estimates (σ2

E)∗

X ∈ Po(θ) θ∗ = x̄
θ∗

n

K ∈ Bin(n, p) θ∗ =
k

n

θ∗(1− θ∗)
n

X ∈ Exp(θ) θ∗ = x̄
(θ∗)2

n

X ∈ N(m, σ2) θ∗ = (x̄ , s2n)
( s2n
n
,

2(s2n)2

n

)
Example - times between earthquakes: Model exponential cdf
P(T ≤ t) = 1− exp(−t/a); With θ = a table gives a∗ = 437.2 days;
Variance of estimation error

(σ2
E)∗ =

(θ∗)2

n
=

437.22

63
= 3034, day2.

Hence the standard deviation is
√

3034 = 55.08 days. ”Common sense”
uncertainty 437.2± 2 · 55.08.



In general

I Choose a cdf F (x ; θ) for data (θ unknown parameter to be selected).

I Compute likelihood function L(θ) (odds for θ). Find θ∗ - the value
of parameter maximizing the likelihood function (having maximal
odds).

I e = θ − θ∗ - estimation error (unknown) and modeled as rv. E .

I If E[E ] = 0 then estimation is unbiased.
I If standard deviation of the error σE → 0 as n→∞ then

estimation is consistent.

I For large n (number of observations) E is approximately normally
distributed N(0, σ2

E), σE is an estimated by σ∗E .

Error in expected time between earthquakes E is approx. N(0, 3083).



Confidence interval can be seen as an interval estimate of a parameter,
i.e. instead of one value we give a set of possible values.

In general for any ML-estimator, the approximate 1− α∗ confidence
interval is

θ∗ − λα/2 · σ∗E ≤ θ ≤ θ∗ + λα/2 · σ∗E .

Quantiles of the standard normal distribution.

α 0.10 0.05 0.025 0.01 0.005 0.001
λα 1.28 1.64 1.96 2.33 2.58 3.09

Examination 2010-05-25 Problem 4.

Examination 2012-05-28 Problem 6.
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Since θ∗ ≈ E[Θ∗] while σ∗E ≈
√

V[Θ∗] one can also give the following alter-
native formulation

E[Θ∗]− λα/2 ·
√

V[Θ∗] ≤ θ ≤ E[Θ∗] + λα/2 ·
√

V[Θ∗], (1)

with approximative confidence 1− α. Here Θ∗ is approx. N(θ∗, (σ2
E)∗).

Examination 2011-05-23 Problem 4.



Delta Method

Example: Suppose we are interested in probability that distance between
earthquakes is longer than 1500 days, viz. p = P(T > 1500). An possible
estimate is

p∗ = exp(−1500/θ∗) = exp(−1500/437.2) = 0.0324.

Confidence interval: Let write P∗ = exp(−1500/Θ∗) and employ (1):

E[P∗]− λα/2 ·
√

V[P∗] ≤ θ ≤ E[P∗] + λα/2 ·
√

V[P∗],

then use Gauss’ formulae to evaluate E[P∗], V[P∗], see blackboard.

This approach is called Delta-method.



Gauss’ Approximations.
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Let X and Y be independent random variables with expectations mX ,mY ,
respectively. For a smooth function h the following approximations

E[h(X ,Y )] ≈ h(mX ,mY ),

V[h(X ,Y )] ≈
[
h1(mX ,mY )

]2
V[X ] +

[
h2(mX ,mY )

]2
V[Y ]

+2h1(mX ,mY ) h2(mX ,mY ) Cov[X ,Y ].

where

h1(x , y) =
∂

∂x
h(x , y), h2(x , y) =

∂

∂y
h(x , y).



More complex example:

Suppose that we are measuring the concentration of radon in buildings.
At some location 40 houses were selected at random out of 200. Then
average yearly concentration X were measured. The requirement is that
the yearly mean concentration should be below 200 Bq/m3. By plotting
the 40 measurement on normal probability paper we conclude that the
measured values are N(m, σ2). The m∗ = x̄ = 120 while
(σ2)∗ = s2n = 400. One decided to compute the quantile x0.001,

x∗0.001 = 120 + 3.09 ·
√

400 = 181.8 < 200.

Hence the number of houses that can have concentration above 181 is
160 · 0.001 = 0.16 which is small.

Find confidence interval for x0.001 instead of x∗0.001!



Solution:

Let X ∗0.001 be the estimator then employ (1):

E[X ∗0.001]− λα/2 ·
√

V[X ∗0.001] ≤ θ ≤ E[X ∗0.001] + λα/2 ·
√

V[X ∗0.001].

Let M∗ and Σ∗ be the estimators of mean m and σ2, resp., then

V[X ∗0.001] = V[M∗ + 3.09 ·
√

Σ∗].

Use Gauss formulas In our case X = M∗, Y = Σ∗ and
h(x , y) = x + 3.09

√
y hence

h1(x , y) = 1, h2(x , y) = 3.09 · /(2
√
y).

(
V[M∗],V[Σ∗]

)
≈
( s2n

n ,
2(s2n )

2

n

)
, Cov[M∗,Σ∗] = 0.



Connection to hypothesis testing:

If one wishes to test whether a parameter θ has a specific value

H0 : θ = θ0

One chooses size of error α, i.e. probability of rejecting a true hypothesis
is α. Then the test can be performed by constructing an interval that
with confidence 1− α contains the true value of the parameter.

If θ0 is not contained in the interval than one rejects the hypothesis H0

that θ = θ0.

Suppose that a dealer claims that L10 = 40 millions of resolutions. Since

our confidence interval [ 19.1, 36.0 ] does not contain value 40 thus, with

”about” 5% probability of making error, we reject the hypothesis that the

quality of the ball bearings is L10 = 40 millions of resolutions.



Examples of exact confidence intervals:

Suppose we have n observations x̄ =
∑

xi/n then:

I 1− α confidence interval for m in N(m, σ2) (σ unknown)[
x̄− tα/2(n − 1)

sn−1√
n
, x̄ + tα/2(n − 1)

sn−1√
n

]
where s2n−1 =

∑
(xi − x̄)2/(n − 1).

I 1− α confidence interval for m in Po(m)

θ ∈

[
χ2
1−α/2(2n x̄)

2n
,
χ2
α/2(2n x̄ + 2)

2n

]
.

I 1− α confidence interval for a in Exp(a)

θ ∈

[
2n x̄

χ2
α/2(2n)

,
2n x̄

χ2
1−α/2(2n)

]
.



Credibility intervals:

I In the Bayessian approach the lack of knowledge of parameter value
θ is described using the probability densities f (θ) (odds). Random
variable Θ having the pdf f (θ) models our knowledge about θ.

I The initial knowledge is described using f prior(θ) density and as the
data are gathered it is updated

f post(θ) = c L(θ)f prior(θ).

I The pdf f post(θ) summarizes our knowledge about θ. However if
one value of for the parameter is needed then

θpredictive = E[Θ] =

∫
θf post(θ) dθ.

I If one wishes to describe the variability of θ by means of an interval
then the so called credibility interval can be computed

[ θ
post
1−α/2, θ

post
α/2 ]


