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Wind Energy production:

Available Wind Power
p = 0.5ρairAr v

3

, ρair air density, Ar area swept by rotor, v - hourly wind speed.
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Left: 7 years data.
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wind ”distribution”.

Location of wind mill depends on expected yearly production:

pyr =
1

7
0.5ρairAr

61354∑

i=1

v3
i = 116678, [some units].

pyr could be estimated using the histogram (wind speed distribution).



Random variables:

Often in engineering or the natural sciences, outcomes of random
experiments are numbers associated with some physical quantities. Such
experiments, called random variables, will be denoted by capital letters,
e.g., U, X , Y , N, K .

The set S of possible values of a random variable is a sample space
which can be all real numbers, all integer numbers, or subsets thereof.

Example 1
For the experiment flipping a coin, let to the outcomes

“Tails” and “Heads” assign the values 0 and 1 and denote by X . One say

that X is Bernoulli distributed. What does it mean ”distributed”?



Uniformly distributed random variables:

Experiment: Roll a die. Number shown on the die N is a random variable.

If die is fair N is uniformly distributed.

Example 2
Examples of random variables: N2005 - number of children

born in Stockholm year 2005. K a month a child (selected at random)
was born. Data. Is K uniformly distributed?

How to get uniformly distributed number in [0, 1], U, say?

Use binary representation of the numbers u = 011 . . .

u =
0

2
+

1

4
+

1

8
+ . . . .



Probability distribution function:

A statement of the type “X ≤ x” for any fixed real value x , e.g.
x = −2.1 or x = 5.375, plays an important role in computation of
probabilities for statements on random variables and a function

FX (x) = P(X ≤ x), x ∈ R,

is called the probability distribution, cumulative distribution
function, or cdf for short.

Example 3
Distribution of K . Figures

Example 4
The probability of any statement about the random

variable X is computable (at least in theory) when FX (x) is known.



Probability mass function

If K takes a finite or (countable) number of values it is called discrete

random variables and the distribution function FK (x) is a “stair” looking

function that is constant except the possible jumps. The size of a jump

at x = k, say, is equal to the probability P(K = k), denoted by pk , and

called the probability-mass function.

Example 5
Probability mass function of K . Pmf
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Left: Distribution function.

Right: Probability-mass function.



Counting variables

Geometric probability-mass function:

P(K = k) = p (1− p)k , k = 0, 1, 2, . . .

Binomial probability-mass function:

P(K = k) = pk =

(
n

k

)
pk(1− p)n−k , k = 0, 1, 2, . . . , n

Poisson probability-mass function:

P(K = k) = e−mmk

k!
, k = 0, 1, 2, . . .

Example 6
Binomially distributed random variable.



Ladislaus Bortkiewicz

Ladislaus Bortkiewicz
(1868-1931)

Important book published in 1898:

Das Gesetz der kleinen Zahlen



Law of Small Numbers

If an experiment is carried out by n independent trials and the
probability for “success” in each trial is p, then the number of
successes K is given by the binomial distribution:

K ∈ Bin(n, p).

If n→∞ and p → 0 so that m = n · p is constant, we have
approximately that

K ∈ Po(np).

(The approximation is satisfactory if p < 0.1 and n > 10.)

Example 7
Let p be probability that accident occurs during one

year, n be number of structures (years) then number of accidents
during one year K ∈ Po(np), example of accident.

Example 8
How good is Poisson approximation?



CDF - defining properties:

Any function F (x) satisfying the following three properties is a

distribution of some random variable:

I The distribution function FX (x) is non-decreasing function.

I FX (−∞) = 0 while FX (+∞) = 1.

I FX (x) is right continuous.

If FX (x) is continuous then P(X = x) = 0 for all x and X is called
continuous. The derivative fX (x) = F ′X (x) is called probability density
function (pdf) and

FX (x) =

∫ x

−∞
fX (z) dz .

Hence any positive function that integrates to one defines a cdf.

Example 8



Normal pdf- and cdf-function:
The cdf of standard normal cdf is defined through its pdf-function:

P(X ≤ x) = Φ(x) =

∫ x

−∞

1√
2π

e−ξ
2/2 dξ.

The class of normal distributed variables Y = m + σ X , where

m, σ > 0 are constants is extremely versatile. From a theoretical point of

view, it has many advantageous features; in addition, variability of

measurements of quantities in science and technology are often well

described by normal distributions.
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Normalized histogram
of weights of 750 newborn children in

Malmö.

Solid line the normal pdf with
m = 3400 g, σ = 570 g.

Is this a good model? Have girls and

boys the same weights variability?



Standard Distributions
In this course we shall meet many classes of discrete cdf: Binomial,

Geometrical, Poisson, ...; and continuous cdf: uniform, normal

(Gaussian), log-normal, exponential, χ2, Weibull, Gumbel, beta ...Distribution Expe
tation Varian
eBeta distribution, Beta(a, b) f(x) = Γ(a+b)
Γ(a)Γ(b)x

a−1(1− x)b−1, 0 < x < 1 a
a+b

ab
(a+b)2(a+b+1)Binomial distribution, Bin(n, p) pk =

(
n
k

)
pk(1− p)n−k, k = 0, 1, . . . , n np np(1− p)First su

ess distribution pk = p(1− p)k−1, k = 1, 2, 3, . . . 1

p
1−p
p2Geometri
 distribution pk = p(1− p)k, k = 0, 1, 2, . . . 1−p

p
1−p
p2Poisson distribution, Po(m) pk = e−mmk

k! , k = 0, 1, 2, . . . m mExponential distribution, Exp(a) F (x) = 1− e−x/a, x ≥ 0 a a2Gamma distribution, Gamma(a, b) f(x) = ba

Γ(a) x
a−1e−bx, x ≥ 0 a/b a/b2Gumbel distribution F (x) = e−e−(x−b)/a

, x ∈ R b+ γa a2π2/6Normal distribution, N(m,σ2)
f(x) = 1

σ
√
2π
e−(x−m)2/2σ2

, x ∈ R
F (x) = Φ((x−m)/σ), x ∈ R

m σ2Log-normal distribution, lnX ∈ N(m,σ2) F (x) = Φ( lnx−m
σ ), x > 0 em+σ2/2 e2m+2σ2 − e2m+σ2Uniform distribution, U(a, b) f(x) = 1/(b − a), a ≤ x ≤ b a+b

2
(a−b)2

12Weibull distribution F (x) = 1− e−(
x−b
a )

c

, x ≥ b b+ aΓ(1 + 1/c)

a2
[
Γ(1 + 2

c )− Γ2(1 + 1
c )
]

1



Quantiles

The α quantile xα, 0 ≤ α ≤ 1, is a generalization of the concepts of
median and quartiles and is defined as follows:

The quantile xα for a random variable X is defined by the following
relations:

P(X ≤ xα) = 1− α, xα = F−(1− α).

Finding quantiles of normal cdf
Example 11



Empirical probability distribution

I Suppose experiment was repeated n times rending in a sequence of
X values, x1, . . . , xn. The fraction Fn(x) of the observations
satisfying the condition “xi ≤ x”

Fn(x) =
number of xi ≤ x , i = 1, . . . , n

n

is called the empirical cumulative distribution function (ecdf).

I The Glivenko–Cantelli Theorem states that the maximal distance
between Fn(x) and FX (x) tends to zero when n increases without
bounds, viz. maxx |FX (x)− Fn(x)| → 0 as n→∞.

I Assuming that FX (x) = Fn(x), means that the uncertainty in the
future (yet unknown) value of X is model by means of drawing a lot
from an urn, where lots contain only the observed values xi . By
Glivenko-Cantelli th. this is a good model when n is large.



Example: lifetimes for ball bearings

Data:
17.88, 28.92, 33.00, 41.52, 42.12, 45.60, 48.48,
51.84, 51.96, 54.12, 55.56, 67.80, 68.64, 68.88,
84.12, 93.12, 98.64, 105.12, 105.84, 127.92, 128.04,

173.40.
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Example wind speed data



In this lecture we met following concepts:

I Random variables (rv).

I Probability distribution (cdf), mass function (pmf), density
(pdf).

I Law of small numbers.

I Quantiles.

I Empirical cdf.

I You should read how to generate uniformly distributed
random numbers.

I How to generate non-uniformly distributed random numbers
by just transforming uniform random numbers.

Examples in this lecture ”click”


