Lecture 3. Fitting Distributions to data - choice of a model.

Igor Rychlik

Chalmers Department of Mathematical Sciences

Probability, Statistics and Risk, MVE300 • Chalmers • March 2014. Click on red text for extra material.

Random variables and cdf.

Random variable is a numerical outcome X, say, of an experiment. To describe its properties one needs to find probability distribution $F_X(x)$. Three approaches will be discussed:

- I Use only the observed values of X (data) to model the variability of X, i.e. normalized histogram, empirical cdf, see Lecture 2.
- II Try to find the proper cdf by means of reasoning. For example a number of heads in 10 flips of a fair coin is Bin(10,1/2).
- III Assume that F_X belongs to a class of distributions b + a Y, for example Y standard normal. Then choose values of parameters a, b that best "fits" data.

Case II - Example:

Let roll a fair die. Sample space $S = \{1, ..., 6\}$ and let random variable K be the number shown. All results are equally probable hence $p_k = P(K = k) = 1/6$.

In 1882, R. Wolf rolled a die $n = 20\,000$ times and recorded the number of eyes shown

Number of eyes k123456Frequency n_k 340736313176291634483422

Was his die fair?

The χ^2 test, proposed by Karl Pearson' (1857-1936), can be used to investigate this issue.

Pearson' χ^2 test:

Hypothesis H_0 : We claim that

P("Experiment results in outcome k") = p_k , k = 1, ..., r.

In our example r = 6, $p_k = 1/6$.

Significance level α : Select the probability (risk) of rejecting a true hypothesis. Constant α is often chosen to be 0.05 or 0.01. Rejecting H_0 with a lower α indicates stronger evidence against H_0 .

Data: In *n* experiments one observed n_k times outcome *k*.

Test: Estimate p_k by $p_k^* = n_k/n$. Large distances $p_k - p_k^*$ make hypothesis H_0 questionable. Pearson proposed to use the following statistics to measure the distance:

$$Q = \sum_{k=1}^{r} \frac{(n_k - np_k)^2}{np_k} \left(= n \sum_{k=1}^{r} \frac{(p_k^* - p_k)^2}{p_k} \right)$$
(1)

Details of the χ^2 test

How large Q should be to reject the hypothesis? Reject H_0 if $Q > \chi^2_{\alpha}(f)$, where f = r - 1. Further, in order to use the test, as a rule of thumb one should check that $np_k > 5$ for all k.

Example 1 For Wolf's data Q is

Q = 1.6280 + 26.5816 + 7.4261 + 52.2501 + 3.9445 + 2.3585 = 94.2

Since f = r - 1 = 5 and the quantile $\chi^2_{0.05}(f) = 11.1$, we have $Q > \chi^2_{0.05}(5)$ which leads to rejection of the hypothesis of a fair dice.¹

Example 2 Are children birth months uniformly distributed? Data, Matlab code:.

¹Not rejecting the hypothesis does not mean that there is strong evidence that H_0 is true. It is recommendable to use the terminology "reject hypothesis H_0 " or "not reject hypothesis H_0 " but not to say "accept H_0 ".

Case III - parametric approach to find F_X .

Parametric estimation procedure of F_X contains three main steps: choice of a model; finding the parameters; analysis of error:

Choose a model, i.e. select one of the standard distributions F(x) (normal, exponential, Binomial, Poisson ...). Next postulate that

$$F_X(x) = F\left(\frac{x-b}{a}\right).$$

► Find estimates (a*, b*) such that F_n(x) ≈ F((x - b*)/a*) (F_X(x) ≈ F_n(x)), here first method of moments to estimates parameters will be presented. Then more advanced and often more accurate maximum likelihood method will be presented on the next lecture.

Moments of a rv. - Law of Large Numbers (LLN)

▶ Let X₁,..., X_k be a sequence of iid variables all having the distribution F_X(x). Let E[X] be a constant, called the **expected** value of X,

$$\mathsf{E}[X] = \int_{-\infty}^{+\infty} x f_X(x) \, \mathrm{d}x, \text{ or } \mathsf{E}[K] = \sum_k k \, p_k$$

 If the expected value of X exists and is finite then, as k increases (we are averaging more and more variables), the average

$$\frac{1}{k}(X_1+X_2+\cdots+X_k)\approx \mathsf{E}[X]$$

with equality when k approaches infinity.

• Linearity property E[a + bX + cY] = a + bE[X] + cE[Y]. *Example 3*

Other moments

▶ Let X_i be iid all having the distribution F_X(x). Let us also introduce constants called the moments of X, defined by

$$\mathsf{E}[X^n] = \int_{-\infty}^{+\infty} x^n f_X(x) \,\mathrm{d}x \quad \text{or} \quad \mathsf{E}[\mathcal{K}^n] = \sum_k k^n p_k.$$

▶ If E[Xⁿ] exists and is finite then, as k increases, the average

$$\frac{1}{k}(X_1^n+X_2^n+\cdots+X_k^n)\approx \mathsf{E}[X^n].$$

The same is valid for other functions of r.v.

Variance, Coefficient of variation

▶ The variance V[X] and coefficient of variation R[X]

$$V[X] = E[X^2] - E[X]^2$$
, $R[X] = \frac{\sqrt{V[X]}}{E[X]}$.

► IF X, Y are independent then $V[a + bX + cY] = b^{2}V[X] + c^{2}V[Y].$ Example 4

• Note that $V[X] \ge 0$. If V[X] = 0 then X is a constant.

Example: Expectations and variances.

Example 5 Expected yearly wind energy production, on blackboard.

Distribution		Expectation	Variance
Bet a distribution, $Beta(a, b)$	$f(x) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} x^{a-1} (1-x)^{b-1}, \ 0 < x < 1$	$\frac{a}{a+b}$	$\frac{ab}{(a+b)^2(a+b+1)}$
Binomial distribution, $\mathrm{Bin}(n,p)$	$p_k = \binom{n}{k} p^k (1-p)^{n-k}, \ k = 0, 1, \dots, n$	np	np(1-p)
First success distribution	$p_k = p(1-p)^{k-1}, k = 1, 2, 3, \ldots$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
Geometric distribution	$p_k = p(1-p)^k, k = 0, 1, 2, \dots$	$\frac{1-p}{p}$	$\frac{1-p}{p^2}$
Poisson distribution, $Po(m)$	$p_k = e^{-m} \frac{m^k}{k!}, k = 0, 1, 2, \dots$	m	m
Exponential distribution, $\operatorname{Exp}(a)$	$F(x) = 1 - \mathrm{e}^{-x/a}, x \ge 0$	a	a^2
$\operatorname{Gamm}\operatorname{a}\operatorname{distribution},\ \operatorname{Gamm}\operatorname{a}(a,b)$	$f(x) = \frac{b^a}{\Gamma(a)} x^{a-1} \mathrm{e}^{-bx}, x \ge 0$	a/b	a/b^2
Gumbel distribution	$F(x) = e^{-e^{-(x-b)/a}}, x \in \mathbb{R}$	$b + \gamma a$	$a^2\pi^2/6$
Normal distribution, $N(m, \sigma^2)$	$\begin{split} f(x) &= \frac{1}{\sigma\sqrt{2\pi}} \mathrm{e}^{-(x-m)^2/2\sigma^2}, x \in \mathbb{R} \\ F(x) &= \Phi\big((x-m)/\sigma\big), x \in \mathbb{R} \end{split}$	m	σ^2
Log-normal distribution, $\ln X \in \mathrm{N}(m,\sigma^2)$	$F(x)=\Phi(\tfrac{\ln x-m}{\sigma}), x>0$	$e^{m+\sigma^2/2}$	$\mathrm{e}^{2m+2\sigma^2}-\mathrm{e}^{2m+\sigma^2}$
Uniform distribution, $U(a, b)$	$f(x) = 1/(b-a), a \le x \le b$	$\frac{a+b}{2}$	$\frac{(a-b)^2}{12}$
Weibull distribution	$F(x) = 1 - e^{-\left(\frac{x-b}{a}\right)^c}, x \ge b$	$b+a\Gamma(1+1/c)$	

 $a^{2}\left[\Gamma(1+\frac{2}{2})-\Gamma^{2}(1+\frac{1}{2})\right]$

Method of moments to fit cdf to data:

- When a cdf F_X(x) is specified then one can computed the expected value, variance, coefficient of variation and other moments E[X^k].
- If cdf F_X(x) = F(x→b/a), i.e. depends on two parameters a, b then also moments are function of the parameters.

$$\mathsf{E}[X^k] = m_k(a, b)$$

► LLN tells us that having independent observations x₁,..., x_n of X the average values

$$ar{m}_k = rac{1}{n}\sum_{i=1}^n x_i^k o \mathsf{E}[X^k], \qquad ext{as } n o \infty.$$

Methods of moments recommends to estimate the parameters a, b by a^{*}, b^{*} that solve the equation system

$$m_k(a^*,b^*)=\bar{m}_k,\quad k=1,2.$$

Periods in days between serious earthquakes:

Left figure - histogram of 62 observed times between earthquakes. Right figure - comparison of the fitted exponential cdf to the earthquake data compared with ecdf - we can see that the two distributions are very close.

Is $a = a^*$, i.e. is error $e = a - a^* = a - 437.2 = 0$?

Example 7

Poisson cdf The following data set gives the number of killed drivers of motorcycles in Sweden 1990-1999:

39 30 28 38 27 29 38 33 33 36.

Assume that the number of killed drivers per year is modeled as a random variable $K \in Po(m)$ and that numbers of killed drivers during consecutive years, are independent and identically distributed.

From the table we read that E[K] = m hence methods of moments recommends to estimate parameter m by the average number $m^* = \bar{k}$, viz. $m^* = (39 + ... + 36)/10 = 33.1$.

Is $m = m^*$, i.e. is error $e = m - m^* = m - 33.1 = 0$?

Gaussian model

Example 8 Since $V[X] = E[X^2] - E[X]^2$ LLN gives the following estimate of the variance

$$s_n^2 = \frac{1}{n} \sum_{i=1}^n x_i^2 - \left(\frac{1}{n} \sum_{i=1}^n x_i\right)^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2 \to V[X], \text{ as } n \text{ tends to infinity.}$$

We proposed to model weight of newborn baby X by normal (Gaussian) cdf $N(m, \sigma^2)$. Since E[X] = m and $V[X] = \sigma^2$ hence the method of moments recommends to estimate m, σ^2 by $m^* = \bar{x}, (\sigma^2)^* = s_n^2$. For the data $m^* = 3400$ g, $(\sigma^2)^* = 570^2$, g².

Are $m = m^*$ and $\sigma^2 = s_n^2$, i.e. are errors $e_1 = m - m^* = m - 33.1 = 0$, $e_2 = \sigma^2 - (\sigma^2)^* = \sigma^2 - 570^2 = 0$?

Weibull model

Example 10

For environmental variables often Weibull cdf fits well data. Suppose that

$$F_X(x) = 1 - \exp\left(-\left(\frac{x}{a}\right)^c\right),$$

a is scale parameter, c shape parameter. Using the table we have that

$$\mathsf{E}[X] = \mathsf{a}\mathsf{\Gamma}(1+1/c), \qquad \mathsf{R}[X] = rac{\sqrt{\mathsf{\Gamma}(1+2/c)-\mathsf{\Gamma}(1+1/c)^2}}{\mathsf{\Gamma}(1+1/c)}.$$

Method of moments: estimate the coefficient of variation by $\sqrt{s_n^2}/\bar{x}$, solve numerically the second equation for c^* , see Table 4 on page 256, then $a^* = \bar{x}/\Gamma(1+1/c^*)$.

Example 9 Fitting Weibull cdf to bearing lifetimes

Fitting Weibull cdf to wind speeds measurements

Estimation error:

In for the exponential, Poisson and Gaussian models the unknown parameter θ were E[X] and has been estimated by $\theta^* = \bar{\mathbf{x}}$. The estimation error $e = \theta - \theta^*$ is unknown (θ is not known). We want to describe the possible values of e by finding the distribution of the estimation error $\mathcal{E} = \theta - \theta^*$!

Let X_1, X_2, \ldots, X_n be a sequence of n iid random variables each having finite values of expectation $m = E[X_1]$ and variance $V[X_1] = \sigma^2 > 0$. The **central limit theorem** (CLT) states that as the sample size *n* increases, the distribution of the sample average $\bar{\mathbf{X}}$ of these random variables approaches the normal distribution with a mean *m* and variance σ^2/n irrespective of the shape of the original distribution.²

²" The first version of CLT was postulated by the French-born mathematician Abraham de Moivre who, in a remarkable article published in 1733, used the normal distribution to approximate the distribution of the number of heads resulting from many tosses of a fair coin."

Computation of $m_{\mathcal{E}}, \sigma_{\mathcal{E}}^2$.

Using **Central Limit Theorem** we can approximate cdf $F_{\mathcal{E}}(e)$ by normal distribution $N(m_{\mathcal{E}}, \sigma_{\mathcal{E}}^2)$, where $m_{\mathcal{E}} = \mathsf{E}[\mathcal{E}], \sigma_{\mathcal{E}}^2 = \mathsf{V}[\mathcal{E}]$.

It is easy to demonstrate (see blackboard) that for the studied cases $E[\Theta^*] = \theta$ and hence $m_{\mathcal{E}} = E[\mathcal{E}] = 0$. Estimators having $m_{\mathcal{E}} = 0$ are called **unbiased**.

Similarly one can show that $\sigma_{\mathcal{E}}^2 = V[\mathcal{E}] = V(X)/n$ (see blackboard). Using the table we have that:

•
$$\sigma_{\mathcal{E}}^2 = \sigma^2/n$$
 if X is $N(m, \sigma^2)^3$

³Problem, variance $\sigma_{\mathcal{E}}^2$ depends on unknown parameters! Since $\theta^* \to \theta$ as $n \to \infty$ one is estimating $\sigma_{\mathcal{E}}^2$ by replacing θ by θ^* and denote the approximation by $(\sigma_{\mathcal{E}}^2)^*$.

In this lecture we met following concepts:

• χ^2 -test.

- Method of moments to fit(cdf) to data.
- Examples of data described using exponential, Poisson, Gaussian (normal) and Weibull cdf.
- Central Limit Theorem, giving normal distribution of estimation errors.

Examples in this lecture "click"