Lecture 4. Maximum Likelihood Estimation - confidence intervals.

Igor Rychlik

Chalmers Department of Mathematical Sciences

Probability, Statistics and Risk, MVE300 • Chalmers • March 2014. Click on red text for extra material.

Maximum Likelihood method

It is *parametric* estimation procedure of F_X consisting of two steps: choice of a model; finding the parameters:

Choose a model, i.e. select one of the standard distributions F(x) (normal, exponential, Weibull, Poisson ...). Next postulate that

$$F_X(x) = F\left(\frac{x-b}{a}\right).$$

► Find estimates (a^{*}, b^{*}) such that F_X(x) ≈ F((x - b^{*})/a^{*}). The maximum likelihood estimates (a^{*}, b^{*}) will be presented.

Finding likelihood, review from Lecture 1:

- ▶ Let A₁, A₂,..., A_k be a partition of the sample space, i.e. k excluding alternatives such that one of them is true. Suppose that it is equally probable that any of A_i is true, i.e. prior odds q_i⁰ = 1.
- ▶ Let $B_1, ..., B_n$ be true statements (evidences) and let B be the event that all B_i are true, i.e. $B = B_1 \cap B_2 \cap ... \cap B_n$.
- The new odds q_i^n for A_i after collecting B_i evidences are

$$q_i^n = \mathsf{P}(B \mid A_i) \cdot q_i^0 = \mathsf{P}(B \mid A_i) \cdot 1 = \mathsf{P}(B_1 \mid A_i) \cdot \ldots \cdot \mathsf{P}(B_n \mid A_i).$$

Function $L(A_i) = P(B | A_i)$ is called likelihood that A_i is true.

The ML estimate - discrete case:

The maximum likelihood method recommends to choose the alternative A_i^* having highest likelihood, i.e. find *i* for which the likelihood $L(A_i)$ is highest.

ML estimate - continuous variable:

Model: Let consider a continuous rv. and postulate that $F_X(x)$ is exponential cdf, i.e. $F_X(x) = 1 - \exp(-x/a)$ and pdf

$$f_X(x) = \exp(-x/a)/a = f(x; a).$$

Data: $\mathbf{x} = (x_1, x_2, \dots, x_n)$ are observations of X. (Example: the earthquake data where n = 62 obs.)

Likelihood function:¹ In practice data is given with finite number of digits, hence one only knows that events $B_i = x_i - \epsilon < X \le x_i + \epsilon$ is true. For small ϵ , $P(B_i) \approx f_X(x_i) \cdot 2\epsilon$ thus

$$L(a) = \mathsf{P}(B_1|a) \cdot \ldots \cdot \mathsf{P}(B_n|a) = (2\epsilon)^n f(x_1; a) \cdot \ldots \cdot f(x_n; a)$$

ML-estimate: a^* maximizes L(a) or **log-likelihood** $l(a) = \ln L(a)$. *Example 2* Exponential cdf.

¹Since $P(X = x_i) = 0$ for all values of parameter *a* it is not obvious how to define the likelihood function L(a).

Sumarizing - Maximum Likelihood Method.

For *n* independent observations x_1, \ldots, x_n the likelihood function

$$L(\theta) = \begin{cases} f(x_1; \theta) \cdot f(x_2; \theta) \cdot \ldots \cdot f(x_n; \theta) & \text{(continuous r.v.)} \\ p(x_1; \theta) \cdot p(x_2; \theta) \cdot \ldots \cdot p(x_n; \theta) & \text{(discrete r.v.)} \end{cases}$$

where $f(x; \theta)$, $p(x; \theta)$ is probability density and probability-mass function, respectively.

The value of θ which maximizes $L(\theta)$ is denoted by θ^* and called the ML estimate of θ .

Example: Estimation Error \mathcal{E}

Suppose that position of moving equipment is measured periodically using GPS. Example of sequence of positions p^{GPS} is 1.16, 2.42, 3.55, ..., km. Calibration procedure of the GPS states that the **error**

$$\mathcal{E} = p^{true} - p^{GPS}$$

is approximately normal; is in average zero (no bias) and has standard deviation $\sigma = 50$ meters. What does it means in practice?

$lpha \lambda_{lpha}$	0.10	0.05	0.025	0.01	0.005	0.001
	1.28	1.64	1.96	2.33	2.58	3.09
Example	$e 4$ $e_{\alpha} = a$	$\tau \lambda_{\alpha}$.				

Quantiles of the standard normal distribution.

Confidence interval:

Clearly error $\mathcal{E} = p^{true} - p^{GPS}$ is with probability $1 - \alpha$ in the interval:

$$\mathsf{P}(e_{1-\alpha/2} \leq \mathcal{E} \leq e_{\alpha/2}) = 1 - \alpha.$$

For $\alpha=$ 0.05, $\textit{e}_{\alpha/2}\approx1.96\,\sigma$, $\textit{e}_{1-\alpha/2}\approx-1.96\,\sigma$, $\sigma=$ 50 m, hence

$$\begin{aligned} 1 - \alpha &\approx & \mathsf{P} \left(p^{GPS} - 1.96 \cdot 50 \leq p^{true} \leq p^{GPS} + 1.96 \cdot 50 \right) \\ &= & \mathsf{P} \left(p^{true} \in \left[p^{GPS} - 1.96 \cdot 50, \ p^{GPS} + 1.96 \cdot 50 \right] \right) \end{aligned}$$

If we measure many times positions using the same GPS and errors are independent then frequency of times statement

$$A = "p^{true} \in [p^{GPS} - 1.96 \cdot 50, p^{GPS} + 1.96 \cdot 50]"$$

is true will be close to 0.95.²

²Often, after observing an outcome of an experiment, one can tell whether a statement about outcome is true or not. Observe that this is not possible for A!

Asymptotic normality of error \mathcal{E} :

When unknown parameter θ , say, is estimated by mean of observations then by Central Limit Theorem the error $\mathcal{E} = \theta - \theta^*$ has mean zero and is asymptotically (as number of observations *n* tends to infinity) normally distributed.³

Distribution	ML estimates	$(\sigma_{\mathcal{E}}^2)^*$
$X \in Po(heta)$	$\theta^* = \bar{x}$	$\frac{\theta^*}{n}$
$K \in Bin(n, \theta)$	$\theta^* = \frac{k}{n}$	$\frac{\theta^*(1-\theta^*)}{n}$
$X\in Exp(heta)$	$\theta^* = \bar{x}$	$\frac{(\theta^*)^2}{n}$
$X \in N(heta,\sigma^2)$	$ heta^* = ar{x}$	$\frac{s_n^2}{n}$

Example 5

³Similar result was valid for GPS estimates of positions.

Confidence interval for unknown parameter:

As for GPS measurements, probability that statement

$$A = "\theta \in [\theta^* - \lambda_{\alpha/2}\sigma_{\mathcal{E}}^*, \ \theta^* + \lambda_{\alpha/2}\sigma_{\mathcal{E}}^*]",$$

is true is approximately $1 - \alpha$. Since we can not tell whether A is true or not the probability measures lack of knowledge. Hence one call the probability confidence⁴.

Under some assumptions, the ML estimation error $\mathcal{E} = \theta - \theta^*$ is asymptotically normal distributed. With $\sigma_{\mathcal{E}}^* = 1/\sqrt{-\ddot{l}(\theta^*)}$

$$\theta \in [\theta^* - \lambda_{\alpha/2}\sigma_{\mathcal{E}}^*, \ \theta^* + \lambda_{\alpha/2}\sigma_{\mathcal{E}}^*],$$

with approximately $1 - \alpha$ confidence.

⁴However if we use confidence intervals to measure uncertainty of estimated parameters values then in long run the statements A will be true with $1 - \alpha$ frequency

Exact confidence interval an example - Horse kicks data:

In 1898, von Bortkiewicz published a dissertation about a law of low numbers where he proposed to use the Poisson probability-mass function in studying accidents.

A part of his famous data is the number of soldiers killed by horse-kicks 1875-1894 in corps of the Prussian army. Here the data from corps II will be used:

 $0 \quad 0 \quad 0 \quad 2 \quad 0 \quad 2 \quad 0 \quad 0 \quad 1 \quad 1 \quad 0 \quad 0 \quad 2 \quad 1 \quad 1 \quad 0 \quad 0 \quad 2 \quad 0 \quad 0$

As Bortkiewicz we assumed a Poisson distribution and found the ML estimate $m^* = \bar{\mathbf{x}} = 0.6$. The total number of victims is 12 (in 20 years, n = 20) which we consider sufficiently large to apply asymptotic normality.

Confidence interval - Horse kicks data:

For a Poisson variable, $(\sigma_{\mathcal{E}}^2)^* = m^*/n$, hence $\sigma_{\mathcal{E}}^* = \sqrt{m^*/20} = 0.173$. The **asymptotic confidence interval** having approximately confidence 0.95, for the true intensity of killed people due to horse kicks

$$\theta \in \begin{bmatrix} 0.6 - 1.96 \cdot 0.173, \ 0.6 + 1.96 \cdot 0.173 \end{bmatrix} = \begin{bmatrix} 0.26, \ 0.94 \end{bmatrix}.$$

The exact confidence interval having confidence $1 - \alpha$ is

$$m \in \left[\frac{\chi^2_{1-\alpha/2}(2n\,m^*)}{2n}, \frac{\chi^2_{\alpha/2}(2n\,m^*+2)}{2n}
ight].$$

For the Horse kicks data $m^* = 0.6$ and we get

$$\theta \in [0.32, 1.05]$$

since $\chi^2_{1-\alpha/2}(2n\theta^*) = \chi^2_{0.975}(24) = 12.40$, $\chi^2_{0.025}(26) = 41.92$.

The χ^2 test for continuous *X*

Since the parameter θ is unknown we wish to test hypothesis

$$H_0: F_X(x) = F(x, \theta^*).$$

- In order to use χ² test the variability of X is described by discrete function K = f(X).
- ▶ Definition of K: choose a partition $c_0 < c_1 < \ldots < c_{r-1} < c_r$ and let K = k if $c_{k-1} < X \le c_k$.
- ▶ Observed X, (x₁,..., x_n), are transformed into frequencies n_k, how many times K took value k, and P(K = k) is estimated by p^{*}_k = n_k/n. Finally p^{*}_k is compared with

$$p_k = \mathsf{P}(K = k) = \mathsf{P}(c_{k-1} < X \le c_k) = F(c_k, \theta^*) - F(c_{k-1}, \theta^*).$$

► H_0 is rejected if $Q = \sum_{k=1}^{r} \frac{(n_k - np_k)^2}{np_k} > \chi_{\alpha}^2(f)$. Here f = r - m - 1, where *m* is the number of parameters that have been estimated.⁵

⁵As a rule of thumb one should check that $np_k > 5$ for all k.

Times between serious earthquakes - exponential cdf?

• Hypothesis
$$H_0: F(x; \theta) = 1 - \exp(-x/\theta^*)$$
 with $\theta^* = 437.2$.

▶ Defining K: $c_0 = 0$, $c_1 = 100$, $c_2 = 200$, $c_3 = 400$, $c_4 = 700$, $c_5 = 1000$, and $c_6 = \infty$ and finding n_k "click".

▶ Probabilities
$$p_k = P(K = k)$$
;
 $p_1 = 1 - e^{-100/437.2} = 0.2045$, $p_2 = e^{-100/437.2} - e^{-200/437.2} = 0.1627$,
and $p_3 = 0.2323$, $p_4 = 0.1989$, $p_5 = 0.1001$ and $p_6 = 0.1015$.

Computing Q statistics and testing:

Green dots np_i red dots n_i . Q = 0.1376 + 0.9449 + 0.0113 + 0.0362 + 2.3191 + 0.8355 = 4.285.

Testing H_0 : Now f = 6 - 1 - 1 and with $\alpha = 0.05$, $\chi^2_{0.05}(4) = 9.49$. Hence the exponential model can not be rejected.

In this lecture we met following concepts:

- Maximum Likelihood Method.
- CDF for estimation error.
- Confidence intervals, asymptotic based on ML methodology and example of exact conf. int..
- χ^2 test for continuous cdf.

Examples in this lecture "click"