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Maximum Likelihood method

It is parametric estimation procedure of Fx consisting of two steps:
choice of a model; finding the parameters:

> Choose a model, i.e. select one of the standard distributions F(x)
(normal, exponential, Weibull, Poisson ...). Next postulate that

).

xX—b

» Find estimates (a*, b*) such that Fx(x) ~ F((x — b*)/a*). The
maximum likelihood estimates (a*, b*) will be presented.



Finding likelihood, review from Lecture 1:

> Let Ay, Ao, ..., Ax be a partition of the sample space, i.e. k
excluding alternatives such that one of them is true. Suppose that it
is equally probable that any of A; is true, i.e. prior odds q° = 1.

> Let By,..., B, be true statements (evidences) and let B be the
event that all B; are true, ie. B=B1NBN...NB,.

> The new odds g7 for A; after collecting B; evidences are
af =P(B|A)) -} =P(B|A))-1=P(Bi|A))- ... P(By|A).

Function L(A;) = P(B| A;) is called likelihood that A; is true.



The ML estimate - discrete case:

The maximum likelihood method recommends to choose the
alternative A? having highest likelihood, i.e. find / for which the
likelihood L(A;) is highest.

Example 1
Binomial cdf.




ML estimate - continuous variable:

Model: Let consider a continuous rv. and postulate that Fx(x) is
exponential cdf, i.e. Fx(x) =1 — exp(—x/a) and pdf

fx(x) = exp(—x/a)/a = f(x; a).

Data: x = (x1, X2, ..., X,) are observations of X. (Example: the
earthquake data where n = 62 obs.)

Likelihood function:! In practice data is given with finite number of
digits, hence one only knows that events B; ="x; —e < X < x; +¢" is
true. For small €, P(B;) =~ fx(x;) - 2¢ thus

L(a) =P(B1]a) ... - P(Bnla) = (2¢)" f(x1;a) - ... f(xq; a).

ML-estimate: a* maximizes L(a) or log-likelihood /(a) = In L(a).

Example 2
Exponential cdf.

!Since P(X = x;) = 0 for all values of parameter a it is not obvious how to
define the likelihood function L(a).




Sumarizing - Maximum Likelihood Method.

For n independent observations xi, ..., x, the likelihood function

 f(x;0) - f(x2;0) - .- F(xns 0) (continuous r.v.)
L(0) = { p(xi;0) - p(x2;0) - ... p(xn;0)  (discrete r.v.)

where f(x; 8), p(x; ) is probability density and probability-mass function,

respectively.

The value of 6 which maximizes L(#) is denoted by 6* and called the ML
estimate of 6.

Example 3
Censored data.



Example: Estimation Error £

Suppose that position of moving equipment is measured periodically
using GPS. Example of sequence of positions p®° is 1.16, 2.42, 3.55, ...,
km. Calibration procedure of the GPS states that the error

£ = ptrue o pGPS

is approximately normal; is in average zero (no bias) and has standard
deviation o = 50 meters. What does it means in practice?

Quantiles of the standard normal distribution.

o 0.10 0.05 0.025 0.01 0.005 0.001
Aa 1.28 1.64 1.96 2.33 2.58 3.09

Example 4
€y = Oy




Confidence interval:

Clearly error £ = ptrue — p&Ps

is with probability 1 — « in the interval:
Pleicap < €< eyp)=1-a.
For o = 0.05, /2 N 1960, e;_np = —1.960, 0 =50 m, hence

l-a ~ P(p°™ —1.96-50 < p™ < p°™ +1.96 - 50)
= P(p™e € [p* —~1.96-50, p" +1.9650]).

If we measure many times positions using the same GPS and errors are inde\
pendent then frequency of times statement

A ="ptme ¢ [p®° —1.96 .50, p®™ +1.96-50]"

is true will be close to 0.95.2 /

2Often, after observing an outcome of an experiment, one can tell whether a
statement about outcome is true or not. Observe that this is not possible for Al



Asymptotic normality of error &:

When unknown parameter 0, say, is estimated by mean of observations
then by Central Limit Theorem the error £ = 8 — 6* has mean zero and
is asymptotically (as number of observations n tends to infinity) normally
distributed.3

Distribution ML estimates (02)*
X € Po(f) 0" = x 97
K € Bin(n, ) 0" = — 671 =6")
n
*\2
X € Exp(0) 0* =x (Gn)
2
X € N(0,02) 0* =x 7”

Example 5

3Similar result was valid for GPS estimates of positions.



Confidence interval for unknown parameter:
As for GPS measurements, probability that statement
A="0el0" — Aaj20g, 0° + )\a/zag]”,

is true is approximately 1 — . Since we can not tell whether A is true or
not the probability measures lack of knowledge. Hence one call the
probability confidence?.

Under some assumptions, the ML estimation error £ = 0 — 0* is asymp-

totically normal distributed. With o} = 1/4/—1(6*)
0 € (0" — Najaot, 0+ Najpot],

with approximately 1 — « confidence. /

*However if we use confidence intervals to measure uncertainty of estimated
parameters values then in long run the statements A will be true with 1 — «
frequency



Exact confidence interval an example - Horse kicks data:

In 1898, von Bortkiewicz published a dissertation about a law of low
numbers where he proposed to use the Poisson probability-mass function
in studying accidents.

A part of his famous data is the number of soldiers killed by horse-kicks
1875-1894 in corps of the Prussian army. Here the data from corps Il will
be used:

00020250011 00211002200

As Bortkiewicz we assumed a Poisson distribution and found the ML
estimate m* = x = 0.6. The total number of victims is 12 (in 20 years,
n = 20) which we consider sufficiently large to apply asymptotic
normality.



Confidence interval - Horse kicks data:

For a Poisson variable, (¢2)* = m*/n, hence oz = \/m*/20 = 0.173.
The asymptotic confidence interval having approximately confidence
0.95, for the true intensity of killed people due to horse kicks

0e€[06—-196-0.173, 0.6+ 1.96-0.173 ] = [0.26, 0.94].

The exact confidence interval having confidence 1 — « is

X3 _app2nm*) X2 ,(2nm* +2)
2n ’ 2n

For the Horse kicks data m* = 0.6 and we get

6 € [0.32, 1.05]

since Xf_a/2(2n0*) = X2.975(24) = 12.40, X3 4»5(26) = 41.92.



The 2

v
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test for continuous X

Since the parameter 6 is unknown we wish to test hypothesis

Ho @ Fx(x) = F(x,0%).
In order to use x? test the variability of X is described by discrete
function K = f(X).

Definition of K: choose a partition ¢y < ¢; < ... < ¢—1 < ¢, and
let K =kif cp1 < X < ck.

Observed X, (xi,...,X,), are transformed into frequencies ny, how
many times K took value k, and P(K = k) is estimated by
pr = ni/n. Finally p; is compared with

Pk = P(K = k) = P(Ck,1 < X< Ck) = F(ck,9*) — F(ck,h@*).

Ho is rejected if @ = Y27, (%= 5 (2 (£) Here f=r—m—1,

npk
where m is the number of parameters that have been estimated.®

®As a rule of thumb one should check that npy > 5 for all k.



Times

between serious earthquakes - exponential cdf?

Hypothesis Hy : F(x;0) = 1 — exp(—x/6*) with §* = 437.2.

Defining K: ¢ =0, ¢c; = 100, ¢ = 200, c3 = 400, ¢4 = 700,

cs = 1000, and ¢g = oo and finding nj " click”.

Probabilities px = P(K = k);

p = 1—e100/4372 _ 0 2045 p, — o~ 100/437:2_,—200/4372 _ g 1677,
and p3 = 0.2323, py = 0.1989, ps = 0.1001 and ps = 0.1015.
Computing @ statistics and testing:

Green dots np; red dots n;.
3 Q = 0.1376 + 0.9449 + 0.0113 + 0.0362 +
uoe . 2.3191 + 0.8355 = 4.285.

. Testing Hy: Now f =6 — 1 — 1 and with
a = 0.05, x2 45(4) = 9.49. Hence the
exponential model can not be rejected.




In this lecture we met following concepts:

Maximum Likelihood Method.

CDF for estimation error.

v

v

v

Confidence intervals, asymptotic based on ML methodology
and example of exact conf. int..

x? test for continuous cdf.

v

Examples in this lecture " click”



