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Maximum Likelihood method

It is parametric estimation procedure of FX consisting of two steps:
choice of a model; finding the parameters:

I Choose a model, i.e. select one of the standard distributions F (x)
(normal, exponential, Weibull, Poisson ...). Next postulate that

FX (x) = F
(x − b

a

)
.

I Find estimates (a∗, b∗) such that FX (x) ≈ F
(
(x − b∗)/a∗

)
. The

maximum likelihood estimates (a∗, b∗) will be presented.



Finding likelihood, review from Lecture 1:

I Let A1,A2, . . . ,Ak be a partition of the sample space, i.e. k
excluding alternatives such that one of them is true. Suppose that it
is equally probable that any of Ai is true, i.e. prior odds q0i = 1.

I Let B1, . . . ,Bn be true statements (evidences) and let B be the
event that all Bi are true, i.e. B = B1 ∩ B2 ∩ . . . ∩ Bn.

I The new odds qni for Ai after collecting Bi evidences are

qni = P(B |Ai ) · q0i = P(B |Ai ) · 1 = P(B1|Ai ) · . . . · P(Bn|Ai ).

Function L(Ai ) = P(B |Ai ) is called likelihood that Ai is true.



The ML estimate - discrete case:

The maximum likelihood method recommends to choose the
alternative A∗i having highest likelihood, i.e. find i for which the
likelihood L(Ai ) is highest.

Example 1
Binomial cdf.
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ML estimate - continuous variable:

Model: Let consider a continuous rv. and postulate that FX (x) is
exponential cdf, i.e. FX (x) = 1− exp(−x/a) and pdf

fX (x) = exp(−x/a)/a = f (x ; a).

Data: x = (x1, x2, . . . , xn) are observations of X . (Example: the
earthquake data where n = 62 obs.)

Likelihood function:1 In practice data is given with finite number of
digits, hence one only knows that events Bi =”xi − ε < X ≤ xi + ε” is
true. For small ε, P(Bi ) ≈ fX (xi ) · 2ε thus

L(a) = P(B1|a) · . . . · P(Bn|a) = (2ε)n f (x1; a) · . . . · f (xn; a).

ML-estimate: a∗ maximizes L(a) or log-likelihood l(a) = ln L(a).

Example 2
Exponential cdf.

1Since P(X = xi ) = 0 for all values of parameter a it is not obvious how to
define the likelihood function L(a).



Sumarizing - Maximum Likelihood Method.

For n independent observations x1, . . . , xn the likelihood function

L(θ) =

{
f (x1; θ) · f (x2; θ) · . . . · f (xn; θ) (continuous r.v.)
p(x1; θ) · p(x2; θ) · . . . · p(xn; θ) (discrete r.v.)

where f (x ; θ), p(x ; θ) is probability density and probability-mass function,
respectively.

The value of θ which maximizes L(θ) is denoted by θ∗ and called the ML
estimate of θ.

Example 3
Censored data.



Example: Estimation Error E

Suppose that position of moving equipment is measured periodically
using GPS. Example of sequence of positions pGPS is 1.16, 2.42, 3.55, ...,
km. Calibration procedure of the GPS states that the error

E = ptrue − pGPS

is approximately normal; is in average zero (no bias) and has standard
deviation σ = 50 meters. What does it means in practice?

Quantiles of the standard normal distribution.

α 0.10 0.05 0.025 0.01 0.005 0.001
λα 1.28 1.64 1.96 2.33 2.58 3.09

Example 4
eα = σλα.



Confidence interval:
Clearly error E = ptrue − pGPS is with probability 1− α in the interval:

P(e1−α/2 ≤ E ≤ eα/2) = 1− α.

For α = 0.05, eα/2 ≈ 1.96σ, e1−α/2 ≈ −1.96σ, σ = 50 m, hence

1− α ≈ P
(
pGPS − 1.96 · 50 ≤ ptrue ≤ pGPS + 1.96 · 50

)
= P

(
ptrue ∈ [pGPS − 1.96 · 50, pGPS + 1.96 · 50]

)
.
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If we measure many times positions using the same GPS and errors are inde-
pendent then frequency of times statement

A = ”ptrue ∈ [pGPS − 1.96 · 50, pGPS + 1.96 · 50]”

is true will be close to 0.95.2

2Often, after observing an outcome of an experiment, one can tell whether a
statement about outcome is true or not. Observe that this is not possible for A!



Asymptotic normality of error E :
When unknown parameter θ, say, is estimated by mean of observations
then by Central Limit Theorem the error E = θ − θ∗ has mean zero and
is asymptotically (as number of observations n tends to infinity) normally
distributed.3

Distribution ML estimates (σ2
E)∗

X ∈ Po(θ) θ∗ = x̄
θ∗

n

K ∈ Bin(n, θ) θ∗ =
k

n

θ∗(1− θ∗)
n

X ∈ Exp(θ) θ∗ = x̄
(θ∗)2

n

X ∈ N(θ, σ2) θ∗ = x̄
s2n
n

Example 5

3Similar result was valid for GPS estimates of positions.



Confidence interval for unknown parameter:

As for GPS measurements, probability that statement

A = ”θ ∈ [θ∗ − λα/2σ∗E , θ∗ + λα/2σ
∗
E ]”,

is true is approximately 1− α. Since we can not tell whether A is true or
not the probability measures lack of knowledge. Hence one call the
probability confidence4.
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Under some assumptions, the ML estimation error E = θ−θ∗ is asymp-

totically normal distributed. With σ∗E = 1/
√
−l̈(θ∗)

θ ∈ [θ∗ − λα/2σ∗E , θ∗ + λα/2σ
∗
E ],

with approximately 1− α confidence.

4However if we use confidence intervals to measure uncertainty of estimated
parameters values then in long run the statements A will be true with 1 − α
frequency



Exact confidence interval an example - Horse kicks data:

In 1898, von Bortkiewicz published a dissertation about a law of low
numbers where he proposed to use the Poisson probability-mass function
in studying accidents.

A part of his famous data is the number of soldiers killed by horse-kicks
1875-1894 in corps of the Prussian army. Here the data from corps II will
be used:

0 0 0 2 0 2 0 0 1 1 0 0 2 1 1 0 0 2 0 0

As Bortkiewicz we assumed a Poisson distribution and found the ML
estimate m∗ = x̄ = 0.6. The total number of victims is 12 (in 20 years,
n = 20) which we consider sufficiently large to apply asymptotic
normality.



Confidence interval - Horse kicks data:

For a Poisson variable, (σ2
E)∗ = m∗/n, hence σ∗E =

√
m∗/20 = 0.173.

The asymptotic confidence interval having approximately confidence
0.95, for the true intensity of killed people due to horse kicks

θ ∈
[

0.6− 1.96 · 0.173, 0.6 + 1.96 · 0.173
]

= [0.26, 0.94].

The exact confidence interval having confidence 1− α is

m ∈

[
χ2
1−α/2(2nm∗)

2n
,
χ2
α/2(2nm∗ + 2)

2n

]
.

For the Horse kicks data m∗ = 0.6 and we get

θ ∈ [0.32, 1.05]

since χ2
1−α/2(2nθ∗) = χ2

0.975(24) = 12.40, χ2
0.025(26) = 41.92.



The χ2 test for continuous X

I Since the parameter θ is unknown we wish to test hypothesis

H0 : FX (x) = F (x , θ∗).

I In order to use χ2 test the variability of X is described by discrete
function K = f (X ).

I Definition of K : choose a partition c0 < c1 < . . . < cr−1 < cr and
let K = k if ck−1 < X ≤ ck .

I Observed X , (x1, . . . , xn), are transformed into frequencies nk , how
many times K took value k , and P(K = k) is estimated by
p∗k = nk/n. Finally p∗k is compared with

pk = P(K = k) = P(ck−1 < X ≤ ck) = F (ck , θ
∗)− F (ck−1, θ

∗).

I H0 is rejected if Q =
∑r

k=1
(nk−npk )2

npk
> χ2

α(f ). Here f = r −m − 1,

where m is the number of parameters that have been estimated.5

5As a rule of thumb one should check that npk > 5 for all k.



Times between serious earthquakes - exponential cdf?

I Hypothesis H0 : F (x ; θ) = 1− exp(−x/θ∗) with θ∗ = 437.2.

I Defining K : c0 = 0, c1 = 100, c2 = 200, c3 = 400, c4 = 700,
c5 = 1000, and c6 =∞ and finding nk ”click”.

I Probabilities pk = P(K = k);

p1 = 1−e−100/437.2 = 0.2045, p2 = e−100/437.2−e−200/437.2 = 0.1627,

and p3 = 0.2323, p4 = 0.1989, p5 = 0.1001 and p6 = 0.1015.

I Computing Q statistics and testing:
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Q = 0.1376 + 0.9449 + 0.0113 + 0.0362 +

2.3191 + 0.8355 = 4.285.

Testing H0: Now f = 6− 1− 1 and with
α = 0.05, χ2

0.05(4) = 9.49. Hence the
exponential model can not be rejected.



In this lecture we met following concepts:

I Maximum Likelihood Method.

I CDF for estimation error.

I Confidence intervals, asymptotic based on ML methodology
and example of exact conf. int..

I χ2 test for continuous cdf.

Examples in this lecture ”click”


