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Survival function - Failure rate:

For a positive rv. T , for example life-time of a component, time to
failure, accident etc.:

I R(t) - survival function is defined by

R(t) = P(T > t) = 1− F (t)

I Λ(t) = − ln(R(t)) - is called cumulative failure-intensity function

R(t) = eln R(t) = e−Λ(t).

I λ(t) = Λ̇(t) - failure intensity function

R(t) = eln R(t) = e−
∫ t

0
λ(s) ds .

Problem 7.3



What is failure intensity measuring:

It can be demonstrated that

λ(s) = lim
t→0

P(T ≤ s + t |T > s)

t
,

which means that for small values of t, λ(s) · t is approximately the
probability that an item of age s will break within t time units.

The lifetimes T is often classify
as; IFR (increasing failure rate);
DFR (decreasing failure rate);

bathtub.



Constant failure rate

I For exponential T ∈ exp(a), a = E[T ]

R(t) = e−t/a hence Λ(t) = t/a and λ(t) = 1/a,

failure intensity is constant.2

I If it passed time s without failure, i.e. ”T > s” is true, then
probability of no failure in the next t time units is

P(T > s + t|T > s) =
P(T > s + t)

P(T > s)
=

e−(s+t)/a

e−s/a
= P(T > t).

This is sometimes stated as ”memorylessness” of exponential cdf.

I Consider components having exponential life-times. For example
electrical fuse (Elsäkring) breaks a circuit when A=”overcurrent”
occurred at time S1 then it is immediately replaced by a new fuse.
Again it breaks after exponentially distributed time (occurrence of
the second overcurrent) at time S2 etc. The sequence S1,S2, . . . is
called a point process.

2Often failures are due to accidents occurring at random.



Constant failure rate - Poisson point process
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Si - times for accidents A (overcurrents), Ti - lifetimes of components,
NA(t) - number of accidents in time interval [0, t].
NA(t) ∈ Po(m), where m = λ · t, thus point process Si is named Poisson.



Examples:
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Left figure - fitted exponential cdf to the earthquake data and ecdf.

Right figure - the fitted exponential cdf, with a = 72.4 (green dashed

line) and Rayleigh cdf, with a = 82, (red line) compared with the

ball-bearing life ecdf.



Failure rate - examples:

I T - Rayleigh distributed life time of ball bearings then

R(t) = e−(t/a)2

hence Λ(t) = (t/a)2 and λ(t) = 2 t/a2.

This is IFR case, as expected. Failures are due to wear.

Example 1
Suppose that a structure contains four ball bearings of the

type studied. The structure is working as long as all bearings are OK.

Compute the failure intensity of the system.



Some useful formulas:

I For continuous positive rv. T

λ(t) =
fT (t)

1− FT (t)
.

I The conditional probability that the s year old component will
survive addition t years

P(T > s + t|T > s) = e−
∫ s+t
s

λ(x) dx .

If T has constant failure rate than s time units old component is as
good as a new one.

I Expected lifetime

E[T ] =

∫ ∞
0

P(T > s) ds

Example 2
Consider a ball bearing that has been used for 60 millions

revolutions. Compute its expected remaining life time. What is the
probability that it will survive additional 60 millions of revolutions?



Combining different risks for failure

In real life, there are often several different types of risks that may cause
failures; one speaks of different failure modes. Each of these has an
intensity λi (s) and a lifetime Ti .

We are interested in the distribution of T : the time instant when
the first of the modes happen.

The event T > t is equivalent to the statement that all lifetimes Ti

exceed t, i.e. T1 > t,T2 > t, . . . ,Tn > t. If Ti are independent then

P(T > t) = P(T1 > t) · . . . · P(Tn > t) = e−
∫ t

0
λ1(s) ds · . . . · e−

∫ t
0
λn(s) ds

= e−
∫ t

0
λ1(s) ds−...−

∫ t
0
λn(s) ds = e−

∫ t
0
λ1(s)+...+λn(s) ds

which means that the failure intensity including the n independent failure

modes is λ(s) =
∑
λi (s).



Absolute Risks
Failure intensity λ(s) describes variability of life lengths in a population
of components, objects or human beings. Extensive statistical studies are
needed to estimate λ(s). More often, observed information is not
sufficient to determine the failure intensity.

Sometimes one has only access to the total number of failures; for
example, number failures during a specified period of time (or in a
certain geographical region). Let us call failures “accidents”, and suppose
that these cause serious hazards for humans. Absolute risk is meant as
the chance for a person to be involved in a serious accident (fatal), or of
developing a disease, over a time-period.

Relative risk - risk ratio, ex. fraction of absolute risks for getting a
disease for population of smokers versus non-smokers.

Often a distinction is made between so-called “voluntary risks” and the
“background risks” Clearly accidents due to an activity like
mountaineering is obviously a voluntary risk, while the risk for death
because of a collapse of a structure is an example of a background risk
and is much smaller (about 106 : 1 in Great Britain).



Tolerable risks

The magnitudes of the risks specified in the following table are meant
approximatively: the number of fatal accidents during a year divided by
the size of the population exposed for the hazard. (Fatal accidents in
traffic belongs to the second category of hazards.)

Risk of death Characteristic response

per person per year

10−3 Uncommon accidents; immediate action is taken

to reduce the hazard

10−4 People spend money, especially public money to

control the hazard (e.g. tra�c signs, police, laws)

10−5 Parents warn their children of the hazard (e.g. �re,

(drowning, �re arms, poison)

10−6 Not of great concern to average person; aware of

hazard, but not of personal nature; act of God.

1



Example - Number of perished in traffic

Year 1998 it was reported about 41 500 perished in traffic accidents in
the United States while in Sweden the number was about 500.

Absolute risks: A fraction of the numbers of perished by the size of
population, gives the frequencies of death. In US the frequency is about
1 in 6 000, while in Sweden, 1 in 17 000.

Relative risks, risk ratio: In US the risks to die in traffic is ca

300Comparisons of chances to die in traffic accidents between countries

can be difficult since statistics may use different definitions and have

different accuracy.

Comparative risks: Drive one hour (or one km) in US can be
compared with one hour (one km) in Sweden. We found that 1998
the risk in US was about 1 person per 100 · 106 km driven while in
Sweden, 1 per 125 · 106 km.



Comparative death risks,(average 1970-1973 in U.K.)

In the following list we will compare ”activity/cause” with absolute risk
for death measured per hour of exposure:

Mountaineering (international) 2700 · 10−8

Air travel (international) 120 · 10−8

Car travel 56 · 10−8

Accidents at home (all) 2.1 · 10−8

Accidents at home (able-bodied persons) 0.7 · 10−8

Fire at home 0.1 · 10−8

Let pretend that the risk for death in traffic in Sweden is of the same
order as in U.K. and that the average person spend 15 minutes in a car
per day and that there are 107 Swedes then the estimated average
number of death in traffic would be

0.25 · 365 · 107 · 50 · 10−8 = 456.



Predicting N

Problem: Let N be the number of perished due to an activity, in a
specified population (a country), and period of time (often one year). For
example: N - number of perished in traffic next year in Sweden.
Uncertainty of N value can be model by means of probability distribution.
Choice of model is often based on reasoning, experience (i.e. historical
data), convenience. Prediction assumes, that N in close future, will vary
in a similar way as in the past.

Model: If N is the number of accidents which occur independently with
small probability then N may have a Poisson distribution, N ∈ Po(m),
where m = E[N].3

Data: One needs data to estimate Nth cdf or test the model. For

example one may have observations of Ni during a number of years. Are

Ni independent Poisson rv. with the same mean m?

3This is a consequence of the approximation of the binomial distribution by
the Poisson distribution (the law of small numbers).



Testing the Poisson assumption for N

We consider two cases:

I E[N] < 15 then one could use the χ2 test to check assumption that
the data follows Poisson cdf. For example Horse-kick data
considered in Chapter 4. Typically the data set has to be large.

I E[N] > 15 then one can use the following approximation. Here less
data is needed to motivate the significance level of the test.

'
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Normal approximation of Poisson distribution.
Let N be a Poisson distributed random variable with expectation m,

N ∈ Po(m).

If m is large (in practice, m > 15), we have approximately that

N ∈ N(m,m).



Example:

From “Statistical Abstract of the United States”, data for the number of
crashes in the world during the years 1976-1985 are found:
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The estimated mean is 23.8 while
variance 22.2

P(N > 35) ≈ 1− Φ((35− 23.8)/
√

23.8) = 1− Φ(2.296) = 0.011.

or P(N > 35) ≈ 1− Φ((35 + 0.5− 23.8)/
√

23.8) = 0.008.



Test for overdispersion4

In the case when m is large, to test whether data do not contradict the
assumption, often the following property of a Poisson distribution is used:
V[N] = E[N] = m. In the case of a Poisson distribution, the ratio
V[N]/E[N] is obviously equal to 1. Let estimate E[N] by n̄ and V[N] by

s2
k−1 =

1

k − 1

k∑
i=1

(ni − n̄)2.

Then an approximate confidence interval for θ = V[N]/E[N] can be
constructed, viz.

n̄

s2
k−1

χ2
1−α/2(k − 1)

k − 1
≤ V[N]

E[N]
≤ n̄

s2
k−1

χ2
α/2(k − 1)

k − 1

with approximate confidence 1− α. If θ = 1 is not in that interval, the

hypothesis about Poisson distribution is rejected.

4Overdispersion is the presence of greater variability in a data set than is expected. It is a
very common feature in applied data analysis because in practice, populations are frequently
heterogeneous, e.g. mean is not constant.



Example - Flight safety

Continuation of Example where number of crashes of commercial air
carriers in the world during the years 1976-1985 were presented. Let us
assume that the flight accidents forms a Poisson point process
(exponential times between accidents) and hence ni are independent
observations of Po(m) distributed variables.

As we shown before n̄ = 23.8 while s2
k−1 = 22.2. The approximate

confidence interval for V[N]/E[N] is

n̄

s2
k−1

χ2
1−α/2(k − 1)

k − 1
≤ V[N]

E[N]
≤ n̄

s2
k−1

χ2
α/2(k − 1)

k − 1

giving for the data[
23.8

22.2
· 2.7

9
,

23.8

22.2
· 19.02

9

]
= [ 0.32, 2.26 ].

Since 1 is in the interval the hypothesis is not rejected.



Counting number of events N :

Data: Suppose we have observed values of N1, . . . ,Nk , which are equal
to n1, n2, . . . , nk , say. The first assumption is that Ni are independent
Poisson with constant mean m (the same as N has). Suppose that the
test for over-dispersion leads to rejection of the hypothesis that Ni are iid
Poisson. Over-dispersion can be caused by variable mean of Ni or
that Poisson model is wrong. What can we do?

The first step is to assume that Ni are Poisson but have different
expectations mi .

Little help for predicting future unless one can model variability of mi !

We propose solution in the next lecture.



In this lecture we met following concepts:

I Failure intensity, IFR, DFR.

I Various risk measures.

I Poisson model for number of accidents.

I Over-dispersion test to control Poisson assumption.

Examples in this lecture ”click”


