Lecture 8. Conditional Distributions introduction to Bayesian Inference<sup>1</sup>

Igor Rychlik

#### Chalmers Department of Mathematical Sciences

Probability, Statistics and Risk, MVE300 • Chalmers • April 2014

<sup>&</sup>lt;sup>1</sup>Bayesian statistics is a general methodology to analyse and draw conclusions from data.

# The conditional cdf $P(X \le x | Y = y)$ . and pdf

Suppose that we observed the value of Y, e.g. we know that Y = y, but X is not observed yet. An important question is if the uncertainty about X is affected by our knowledge that Y = y, i.e. if

$$F(x|y) = \mathsf{P}(X \le x|Y = y)$$

depends on  $y^2$ .

For continuous r.v. X, Y it is not obvious how to define conditional probabilities given that "Y = y", since P(Y = y) = 0 for all y. It is done using th conditional probability density

$$f(x|y) = \frac{f(x,y)}{f(y)}, \quad F(x|y) = \int_{-\infty}^{x} f(\widetilde{x}|y) d\widetilde{x}$$

is the conditional distribution.

<sup>&</sup>lt;sup>2</sup>If X and Y are independent then obviously  $F(x|y) = F_X(x)$  and Y gives us no knowledge about X.

#### Law of Total Probability - continuous case

If X and Y have joint density f(x, y) and B is a statement about X, then

$$\mathsf{P}(B) = \int_{-\infty}^{+\infty} \mathsf{P}(B|Y = y) f_Y(y) \, \mathrm{d}y. \quad \mathsf{P}(B \mid Y = y) = \int_B f(x|y) \, \mathrm{d}x,$$

#### Example 6

In remote located scientific station there is a supply of food for  $Y \in Exp(a_Y)$  days. Waiting time for the new delivery is  $X \in Exp(a_x)$ . Compute probability that food will not finish, i.e. P(X < Y) assuming that X, Y are independent.

## Bayes Formula

In many examples the new piece of information is formulated in form of a statement that is true. For example let Y be strength of a wire and let C ="the wire passed preloading test of 1000kg", i.e. C = "Y > 1000" is true. If the likelihood L(y) = P(C|Y = y) is known then the density f(y|C) is computed using Bayes formula

$$f_Y^{pos}(y) = f(y|C) = cP(C|Y = y)f(y), \qquad c = 1/P(C).$$

Law of total probability gives  $P(C) = \int_0^\infty P(C|Y = y)f(y) dy$ .

# Typical problem in safety of existing structure:

Suppose a wire has strength Y and that loads during years i,  $X_i$ , are independent. We already can compute

 $\mathsf{P}("\text{ wire survives first years load"}) = \mathsf{P}(X_1 < Y) = \int_0^\infty F_{X_1}(y) f_Y(y) \, dy.$ 

Suppose B = "wire survives first years load" is true. What is probability

$$\mathsf{P}("$$
wire survives second year load") =  $\int_0^\infty F_{X_2}(y) f_Y^{post}(y) \, dy.$ 

We need the posteriori strength  $f_Y^{pos}(y)$ , i.e. derivative of  $F_Y(y|B)$ . *Example 6* 

Do computations for unrealistic case that  $X_i$  and Y are exponentially distributed.

#### Bayesian methods in risk evaluation - example:

In the following we shall be mostly interested in studying uncertainties in estimation of probabilities in the following setup. The "initiation" events A are defined and their concurrences are modeled by Poisson point process with intensity  $\lambda_A$ . In order for A to develop to an accident or catastrophe, some other unfortunate circumstances, described by event B, have to take place (B is called a "scenario"). For example, if A is "fire ignition" B could be "failure of sprinkler system".

Sometimes one needs multi-scenario event B, i.e.  $B = B_1 \cup B_2$  where  $B_1$ ,  $B_2$ , are excluding. The important parameters are  $\lambda_A$ ,  $p_1 = P(B_1)$  and  $p_2 = P(B_2)$ .



Figure : Events A at times  $S_i$  with related scenarios  $B_i$ .

 $P_t = P(\text{no accident in period } t) = 1 - e^{-\lambda_A P(B) t} \approx \lambda_A P(B) t$ 

if probability  $P_t$  is small. Hence Two problems of interest in risk analysis:

- The first one will deal with the estimation of a probability p<sub>B</sub> = P(B), say, of some event B, for example the probability of failure of some system.
- The second one is estimation of the probability that at least once an event A occurs in a time period of length t. The problem reduces itself to estimation of the intensity λ<sub>A</sub> of A.

,

In general parameters  $p_B$  and  $\lambda_A$  are attributes of some physical system, e.g. if B = "A water sample passes tests" then  $p_B = P(B)$  is a measure of efficiency of a waste-water cleaning process. The intensity  $\lambda_A$  of accidents may characterize a particular road crossing. The parameters  $p_B$ and  $\lambda_A$  are unknown. Let  $\theta$  denote the unknown value of  $p_B$ ,  $\lambda_A$  or any other quantity.

Introduce odds  $q_{\theta}$ , which for any pair  $\theta_1$ ,  $\theta_2$  represents our belief which of  $\theta_1$  or  $\theta_2$  is more likely to be the unknown value of  $\theta$ , *i.e.*  $q_{\theta_1}: q_{\theta_2}$  are odds for the alternatives  $A_1 = "\theta = \theta_1"$  against  $A_2 = "\theta = \theta_2"$ .

Since there are here uncountable number of alternatives, we require that  $q_{\theta}$  integrates to one and hence  $f(\theta) = q_{\theta}$  is a probability density function representing our belief about the value of  $\theta$ .

#### Prior odds - posterior ods

Again, let  $\theta$  be the unknown parameter, for example  $\theta = p_B$ ,  $\theta = \lambda_A$ , while  $\Theta$  denotes any of the variables P or  $\Lambda$ . Since  $\theta$  is unknown, it is seen as a value taken by a random variable  $\Theta$  with pdf  $f(\theta)$ .

If  $f(\theta)$  is chosen on basis of experience without including observations of outcomes of an experiment then the density  $f(\theta)$  is called a *prior density* and denoted by  $f^{\text{prior}}(\theta)$ .

However, as time passes, our knowledge may change, especially if we observe some outcomes of the experiment which can influence our opinions about the values of parameter  $\theta$  reflecting in the new density  $f(\theta)$ . The modified density  $f(\theta)$  will be called the *posterior density* and denoted by  $f^{\text{post}}(\theta)$ .

The method to update  $f(\theta)$  is

$$f^{\mathsf{post}}(\theta) = cL(\theta) f^{\mathsf{prior}}(\theta)$$

How to find likelihood function  $L(\theta)$  will be discussed later on.

# Predictive probability

Suppose f(p) has been selected and denote by P a random variable having pdf f(p). A plot of f(p) is an illustrative measure of how likely the different values of  $p_B$  are.

If only one value of the probability is needed, the Bayesian methodology proposes to use the so-called **predictive probability** which is simply the mean of P:

$$\mathsf{P}^{\mathsf{pred}}(B) = \mathsf{E}[P] = \int pf(p) \,\mathrm{d}p.$$

The predictive probability measures the likelihood that B occurs in future. It combines two sources of uncertainty: the unpredictability whether B will be true in a future accident and the uncertainty in the value of probability  $p_B$ .



## Predictive probability

As before, if only one single value of the probability is needed, the Bayesian approach proposes to use the predictive probability

$$P_t^{\text{pred}}(A) = \mathsf{E}[P] = \int (1 - \exp(-\lambda t)) f_{\Lambda}(\lambda) \, \mathrm{d}\lambda$$
$$\approx \int t \lambda f_{\Lambda}(\lambda) \, \mathrm{d}\lambda = t \mathsf{E}[\Lambda].^3$$

This is a measure of the risk that A occurs, combining two sources of uncertainty: the variability of the Poisson process of A and the uncertainty in the intensity of accidents  $\lambda_A$ .

In some situations A is an initiation event (accident at a crossing) while B is scenario, e.g. B = "Victim needs hospitalisation". The intensity of  $A \cap B$  is  $\lambda_A P(B)$ . Uncertainty of  $\lambda_A P(B)$  is modeled by  $\Lambda \cdot P$ . The predictive probability of no serious accident is

$$P_t^{\text{pred}}(A \cap B) = \int (1 - \exp(-p\lambda t)) f_{\Lambda}(\lambda) f_P(p) \, d\lambda \, dp$$
$$\approx \int t \, p\lambda f_{\Lambda}(\lambda) \, d\lambda \, dp = t \mathsf{E}[\Lambda] \mathsf{E}[P].$$

Example 6.2