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1Bayesian statistics is a general methodology to analyse and draw
conclusions from data.



The conditional cdf P(X ≤ x |Y = y). and pdf

Suppose that we observed the value of Y , e.g. we know that Y = y , but
X is not observed yet. An important question is if the uncertainty about
X is affected by our knowledge that Y = y , i.e. if

F (x |y) = P(X ≤ x |Y = y)

depends on y2.

For continuous r.v. X ,Y it is not obvious how to define conditional
probabilities given that ”Y = y”, since P(Y = y) = 0 for all y .It is done
using th conditional probability density

f (x |y) =
f (x , y)

f (y)
, F (x |y) =

∫ x

−∞
f (x̃ |y)dx̃

is the conditional distribution.

2If X and Y are independent then obviously F (x |y) = FX (x) and Y gives
us no knowledge about X .



Law of Total Probability - continuous case

If X and Y have joint density f (x , y) and B is a statement about X , then

P(B) =

∫ +∞

−∞
P(B|Y = y)fY (y)dy . P(B |Y = y) =

∫
B

f (x |y)dx ,

Example 6
In remote located scientific station there is a supply of food

for Y ∈ Exp(aY ) days. Waiting time for the new delivery is X ∈ Exp(ax).
Compute probability that food will not finish, i.e. P(X < Y ) assuming
that X ,Y are independent.



Bayes Formula

In many examples the new piece of information is formulated in form of a
statement that is true. For example let Y be strength of a wire and let C
=”the wire passed preloading test of 1000kg”, i.e. C =”Y > 1000” is
true. If the likelihood L(y) = P(C |Y = y) is known then the density
f (y |C ) is computed using Bayes formula

f posY (y) = f (y |C ) = cP(C |Y = y)f (y), c = 1/P(C ).

Law of total probability gives P(C ) =
∫∞

0
P(C |Y = y)f (y) dy .



Typical problem in safety of existing structure:

Suppose a wire has strength Y and that loads during years i , Xi , are
independent. We already can compute

P(”wire survives first years load”) = P(X1 < Y ) =

∫ ∞
0

FX1 (y)fY (y) dy .

Suppose B =”wire survives first years load” is true. What is probability

P(”wire survives second year load”) =

∫ ∞
0

FX2 (y)f postY (y) dy .

We need the posteriori strength f posY (y), i.e. derivative of FY (y |B).

Example 6
Do computations for unrealistic case that Xi and Y are

exponentially distributed.



Bayesian methods in risk evaluation - example:
In the following we shall be mostly interested in studying uncertainties in
estimation of probabilities in the following setup. The ”initiation” events
A are defined and their concurrences are modeled by Poisson point
process with intensity λA. In order for A to develop to an accident or
catastrophe, some other unfortunate circumstances, described by event
B, have to take place (B is called a ”scenario”). For example, if A is
”fire ignition” B could be ”failure of sprinkler system”.

Sometimes one needs multi-scenario event B, i.e. B = B1 ∪ B2 where B1,
B2, are excluding. The important parameters are λA, p1 = P(B1) and
p2 = P(B2).
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Figure : Events A at times Si with related scenarios Bi .



Pt = P(no accident in period t) = 1− e−λA P(B) t ≈ λA P(B) t,

if probability Pt is small. Hence Two problems of interest in risk analysis:

I The first one will deal with the estimation of a probability
pB = P(B), say, of some event B, for example the probability of
failure of some system.

I The second one is estimation of the probability that at least once an
event A occurs in a time period of length t. The problem reduces
itself to estimation of the intensity λA of A.

’

In general parameters pB and λA are attributes of some physical system,

e.g. if B =“A water sample passes tests” then pB = P(B) is a measure of

efficiency of a waste-water cleaning process. The intensity λA of

accidents may characterize a particular road crossing. The parameters pB
and λA are unknown.



Odds for parameters

Let θ denote the unknown value of pB , λA or any other quantity.

Introduce odds qθ, which for any pair θ1, θ2 represents our belief
which of θ1 or θ2 is more likely to be the unknown value of θ, i.e.
qθ1 : qθ2 are odds for the alternatives A1 = “θ = θ1” against
A2 = “θ = θ2”.

Since there are here uncountable number of alternatives, we require
that qθ integrates to one and hence f (θ) = qθ is a probability
density function representing our belief about the value of θ.



Prior odds - posterior ods

Again, let θ be the unknown parameter, for example θ = pB , θ = λA,
while Θ denotes any of the variables P or Λ. Since θ is unknown, it is
seen as a value taken by a random variable Θ with pdf f (θ).

If f (θ) is chosen on basis of experience without including observations of
outcomes of an experiment then the density f (θ) is called a prior density
and denoted by f prior(θ).

However, as time passes, our knowledge may change, especially if we
observe some outcomes of the experiment which can influence our
opinions about the values of parameter θ reflecting in the new density
f (θ). The modified density f (θ) will be called the posterior density and
denoted by f post(θ).

The method to update f (θ) is

f post(θ) = cL(θ) f prior(θ)

How to find likelihood function L(θ) will be discussed later on.



Predictive probability

Suppose f (p) has been selected and denote by P a random variable
having pdf f (p). A plot of f (p) is an illustrative measure of how likely
the different values of pB are.

If only one value of the probability is needed, the Bayesian methodology
proposes to use the so-called predictive probability which is simply the
mean of P:

Ppred(B) = E[P] =

∫
pf (p)dp.

The predictive probability measures the likelihood that B occurs in
future. It combines two sources of uncertainty: the unpredictability
whether B will be true in a future accident and the uncertainty in the
value of probability pB .

Example 6.1



Predictive probability
As before, if only one single value of the probability is needed, the
Bayesian approach proposes to use the predictive probability

Ppred
t (A) = E[P] =

∫
(1− exp(−λ t))fΛ(λ)dλ

≈
∫

tλfΛ(λ)dλ = tE[Λ].3

This is a measure of the risk that A occurs, combining two sources of
uncertainty: the variability of the Poisson process of A and the
uncertainty in the intensity of accidents λA.

In some situations A is an initiation event (accident at a crossing) while
B is scenario, e.g. B =“Victim needs hospitalisation”. The intensity of
A ∩ B is λAP(B). Uncertainty of λAP(B) is modeled by Λ · P. The
predictive probability of no serious accident is

Ppred
t (A ∩ B) =

∫
(1− exp(−pλ t))fΛ(λ)fP(p)dλ dp

≈
∫

t pλfΛ(λ)dλ dp = tE[Λ]E[P].

Example 6.2

3For small x , 1− exp(−x) ≈ x .


