Tentamen MVE300 Sannolikhet, statistik och risk

xxxx-xx-xx kl. 8.30-13.30

Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers
Telefonvakt: Xxx Xxx, telefon: $x x x x x x x x x$
Hjälpmedel: Inga hjälpmedel.
Denna tentamen utgoer, tillsammans med godkaent i Matlabmomentet, grunden foer betygssaettning. Foer betyg 3 kraevs minst 20 poaeng, foer betyg 4 minst 30 poaeng och foer betyg 5 minst 40 poaeng.

1. $(6 \mathrm{p})$ Two coins are flipped. One of the coins is such that it shows heads with probability $1 / 3$ whereas the second one shows heads with probability $2 / 3$. Given that you get exactly one heads, what is the conditional probability that it was the second coin?

Solution: Let A_{i} be the event that coin number i shows heads. Then

$$
\mathbb{P}\left(A_{2} \mid A_{1} \Delta A_{2}\right)=\frac{\mathbb{P}\left(A_{2} \cap A_{1}^{c}\right)}{\mathbb{P}\left(A_{2} \cap A_{1}^{c}\right)+\mathbb{P}\left(A_{2}^{c} \cap A_{1}\right)}=\frac{\frac{2}{3} \cdot \frac{2}{3}}{\frac{2}{3} \cdot \frac{2}{3}+\frac{1}{3} \cdot \frac{1}{3}} .
$$

2. (6 p) Among twelve light bulbs, there are five defective ones. If one picks uniformly at random four of these light bulbs, what is the probability of getting x defected ones, $x=$ $0,1,2,3,4$?

Solution: Let X be the number of defective light bulbs. Then $\mathbb{P}(X=k)$ is the ration of the number of ways of picking exactly k defective and $4-k$ good ones and the total number of ways of picking four bulbs. This gives

$$
\mathbb{P}(X=k)=\frac{\binom{5}{k}\binom{7}{4-k}}{\binom{12}{4}}
$$

Computing this for $k=1,2,3,4$ gives the respective probabilities $7 / 99,35 / 99,42 / 99,14 / 99,1 / 99$.
3. (6p) Suppose that a random number generator uniform numbers among $1,2, \ldots, 9$. What is the probability that the product of n such independent random numbers, is divisible by 10 ?

Solution: Let $X=X_{1} X_{2} \ldots X_{n}$. The event that X is not divisible by 10 is the event that either none of the X_{i} 's is divisible by 5 or none of the X_{i} 's is divisible by 2 . Let A be the former event and B the latter event. Since the X_{i} 's are independent,

$$
\mathbb{P}(A)=\mathbb{P}\left(X_{1} \text { not divisible by } 5\right)^{n}=\left(\frac{8}{9}\right)^{n} .
$$

In the same way

$$
\mathbb{P}(B)=\left(\frac{5}{9}\right)^{n}
$$

Also, the event that X_{1} is neither divisible 5 nor by 2 is the event that X_{1} is $1,3,7$ or 9 . Hence $\mathbb{P}(A \cap B)=(4 / 9)^{n}$. Hence

$$
\mathbb{P}(A \cup B)=\left(\frac{8}{9}\right)^{n}+\left(\frac{5}{9}\right)^{n}-\left(\frac{4}{9}\right)^{n} .
$$

Since we are seeking $\mathbb{P}\left((A \cup B)^{c}\right)$, the answer is $1-(8 / 9)^{n}-(5 / 9)^{n}+(4 / 9)^{n}$.
4. (7p) Let X_{1}, X_{2}, \ldots be independent and identically distributed random variables with expectation μ. Let N be a positive integer valued random variable such that $\mathbb{E}[N]<\infty$ and such that $I_{\{N \geq n\}}$ is independent of X_{n} for all n. Prove that

$$
\mathbb{E}\left[\sum_{i=1}^{N} X_{i}\right]=\mu \mathbb{E}[N] .
$$

Solution: We have by the law of total probability that

$$
\begin{gathered}
\mathbb{E}\left[\sum_{i=1}^{N} X_{i}\right]=\sum_{n=1}^{\infty} \mathbb{E}\left[\sum_{i=1}^{N} X_{i} \mid N=n\right] \mathbb{P}(N=n) \\
=\sum_{n=1}^{\infty} \mathbb{E}\left[\sum_{i=1}^{n} X_{i} \mid N=n\right] \mathbb{P}(N=n) \\
=\sum_{n=1}^{\infty} \mathbb{E}\left[\sum_{i=1}^{n} X_{i}\right] \mathbb{P}(N=n) \\
=\mu \sum_{n=1}^{\infty} n \mathbb{P}(N=n)=\mu \mathbb{E}[N]
\end{gathered}
$$

where the third equality follows from that N is independent of the X_{i} 's.
5. (7p) Assume that the traffic at a certain point at a certain road is a Poisson process with intensity c. After 30 minutes, you have observed 214 vehicles pass.
(a) Make a maximum likelihood estimate of the intensity c,
(b) Use the central limit theorem to give an approximate 95% confidence interval for c

Solution: Let $X(t)$ be the number of vehicles that pass up to tim t. Then $X(t) \sim \operatorname{Poi}(c t)$. We observe $X(30)$ which is $\operatorname{Poi}(30 c)$, so the likelihood is

$$
L(c ; x)=f_{X}(x)=e^{-30 c} \frac{(30 c)^{x}}{x!}
$$

so

$$
\ln L(c ; x)=-30 c+x \ln (30 c)-\ln (x!) .
$$

Differentiating with respect to c and setting to 0 gives

$$
-30+\frac{x}{c}=0
$$

which gives

$$
\hat{c}=\frac{x}{30} .
$$

Since it was observed that $X(30)=219$, we get

$$
\hat{c}=\frac{219}{30}=7.3 .
$$

For part (b), the CLT gives that $X(30)$ is approximately $\mathrm{N}(\lambda, \lambda)$ where $\lambda=30$ c. Standardization gives that $(X(30)-\lambda) / \sqrt{\lambda}$ is approximately standard normal. In analogy with what is done for the binomial distribution, we may replace λ in the denominator by $\hat{\lambda}=30 \hat{c}=219$, i.e. $(X(30)-30 c) / \sqrt{219}$ is approximately standard normal. This gives the 95% confidence interval

$$
30 c=X(30) \pm 1.96 \sqrt{219}
$$

i.e.

$$
c=\frac{X(30)}{30} \pm 1.96 \frac{\sqrt{219}}{30}=7.3 \pm 0.97 .
$$

6. (6 p) In a sample of 15 normally distributed random variables with unknown expectation μ and variance σ^{2}, the sample mean was 10.3 and the sample variance s^{2} was 0.13 .
(a) Make a symmetric confidence interval for μ at the 99% confidence level.
(b) Test the null hypothesis $\mu=10$ against the alternative hypothesis $\mu>10$ at the 5% significance level.

Solution: The confidence interval is given by

$$
\mu=\bar{X} \pm z \frac{s}{\sqrt{n}}
$$

Here $n=15$ and $z=F_{t_{14}}^{-1}(0.995)=2.977$. Since \bar{X} was 10.3 , we get

$$
\mu=10.3 \pm 0.28
$$

For part (b), note that since the number 10 is not in the 99% confidence interval, H_{0} is rejected at the 1% significance level. Hence, trivially H_{0} is also rejected at the 5% significance level.
7. (6p, only TM) Show that the Gumbel distribution is max stable, i.e. if X and Y are two independent Gumbel distributed random variables with the same scale parameter, then $\max (X, Y)$ is Gumbel with the same scale parameter as X and Y. Recall that the distribution function in the Gumbel distribution is

$$
F(x)=\exp \left(-e^{-(x-b) / a}\right),
$$

where a is the scale parameter.
Solution: If X and Y are independent and Gumbel with the same scale parameter a and location parameters b_{1} and b_{2} respectively and $Z=\max (X, Y)$, then

$$
\begin{aligned}
\mathbb{P}(Z \leq x)=\mathbb{P}(X & \leq x) \mathbb{P}(Y \leq x)=\exp \left(-e^{-\left(x-b_{1}\right) / a}-e^{-\left(x-b_{2}\right) / a}\right) \\
& =\exp \left(-e^{-x / a}\left(e^{b_{1} / a}+e^{b_{2} / a}\right)\right)
\end{aligned}
$$

Since $e^{b_{1} / a}+e^{b_{2} / a}$ is positive and the map $c \rightarrow e^{c / a}$ is continuous with image $(0, \infty)$, one can find c so that $e^{b_{1} / a}+e^{b_{2} / a}=e^{c / a}$. Hence

$$
\mathbb{P}(Z \leq x)=\exp \left(-e^{-(x-c) / a}\right)
$$

for some c, i.e. Z is Gumbel distributed.
8. (6p) Let X_{1}, \ldots, X_{n} be a sample of some distribution. Show that the sample variance

$$
s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}
$$

is an unbiased estimator of $\sigma^{2}=\mathbb{V a r}\left(X_{1}\right)$. Show also that the sample standard deviation s satisfies $\mathbb{E}[s] \leq \sigma$.

Solution: It is easy to see that $\sum_{i}\left(X_{i}-\bar{X}\right)^{2}=\sum_{i} X_{i}^{2}-n \bar{X}^{2}$. We have

$$
\mathbb{E}\left[X_{i}^{2}\right]=\mu^{2}+\sigma^{2}
$$

and

$$
\mathbb{E}\left[\bar{X}^{2}\right]=\mathbb{E}[\bar{X}]^{2}+\mathbb{V} \operatorname{ar}(\bar{X})=\mu^{2}+\sigma^{2} / n
$$

Summing up, we get

$$
\mathbb{E}\left[\sum_{i}\left(X_{i}-\bar{X}\right)^{2}\right]=(n-1) \sigma^{2} .
$$

Dividing by $n-1$ on both sides now gives the desired result.
For the inequality, note that

$$
0 \leq \operatorname{Var}(s)=\mathbb{E}\left[s^{2}\right]-\mathbb{E}[s]^{2}=\sigma^{2}-\mathbb{E}[s]^{2} .
$$

This gives $\mathbb{E}[s]^{2} \leq \sigma^{2}$. Taking square roots of both sides now gives $\mathbb{E}[s] \leq \sigma$.

Lycka till!
Johan Jonasson

